On Koornwinder classical orthogonal polynomials in two variables

被引:20
|
作者
Fernandez, Lidia [1 ]
Perez, Teresa E.
Pinar, Miguel A.
机构
[1] Univ Granada, Dept Matemat Aplicada, Granada, Spain
关键词
Orthogonal polynomials in two variables; Classical orthogonal polynomials in two variables;
D O I
10.1016/j.cam.2011.08.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1975, Tom Koornwinder studied examples of two variable analogues of the Jacobi polynomials in two variables. Those orthogonal polynomials are eigenfunctions of two commuting and algebraically independent partial differential operators. Some of these examples are well known classical orthogonal polynomials in two variables, such as orthogonal polynomials on the unit ball, on the simplex or the tensor product of Jacobi polynomials in one variable, but the remaining cases are not considered classical by other authors. The definition of classical orthogonal polynomials considered in this work provides a different perspective on the subject. We analyze in detail Koornwincler polynomials and using the Koornwinder tools, new examples of orthogonal polynomials in two variables are given. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3817 / 3826
页数:10
相关论文
共 50 条
  • [1] Weak classical orthogonal polynomials in two variables
    Fernández, L
    Pérez, TE
    Piñar, MA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 178 (1-2) : 191 - 203
  • [2] Classical orthogonal polynomials in two variables: a matrix approach
    Lidia Fernández
    Teresa E. Pérez
    Miguel A. Piñar
    Numerical Algorithms, 2005, 39 : 131 - 142
  • [3] Classical orthogonal polynomials in two variables:: a matrix approach
    Fernández, L
    Pérez, TE
    Piñar, MA
    NUMERICAL ALGORITHMS, 2005, 39 (1-3) : 131 - 142
  • [4] A matrix Rodrigues formula for classical orthogonal polynomials in two variables
    Alvarez de Morales, Maria
    Fernandez, Lidia
    Perez, Teresa E.
    Pinar, Miguel A.
    JOURNAL OF APPROXIMATION THEORY, 2009, 157 (01) : 32 - 52
  • [5] Bivariate Koornwinder–Sobolev Orthogonal Polynomials
    Misael E. Marriaga
    Teresa E. Pérez
    Miguel A. Piñar
    Mediterranean Journal of Mathematics, 2021, 18
  • [6] Bivariate Koornwinder-Sobolev Orthogonal Polynomials
    Marriaga, Misael E.
    Perez, Teresa E.
    Pinar, Miguel A.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (06)
  • [7] Semiclassical orthogonal polynomials in two variables
    de Morales, Maria Alvarez
    Fernandez, Lidia
    Perez, Teresa E.
    Pinar, Miguel A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 207 (02) : 323 - 330
  • [8] Orthogonal polynomials in two complex variables
    Jackson, D
    ANNALS OF MATHEMATICS, 1938, 39 : 262 - 268
  • [9] Connection coefficients for classical orthogonal polynomials of several variables
    Iliev, Plamen
    Xu, Yuan
    ADVANCES IN MATHEMATICS, 2017, 310 : 290 - 326
  • [10] On the properties for modifications of classical orthogonal polynomials of discrete variables
    AlvarezNodarse, R
    Garcia, AG
    Marcellan, F
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 65 (1-3) : 3 - 18