Scanning probe microscopy as a scalpel to probe filament formation in conductive bridging memory devices

被引:19
|
作者
Celano, Umberto [1 ,2 ]
Goux, Ludovic [1 ]
Opsomer, Karl [1 ]
Iapichino, Martina [1 ]
Belmonte, Attilio [1 ,3 ]
Franquet, Alexys [1 ]
Hoflijk, Ilse [1 ]
Detavernier, Christophe [4 ]
Jurczak, Malgorzata [1 ]
Vandervorst, Wilfried [1 ,2 ]
机构
[1] IMEC, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Phys & Astron IKS, B-3001 Heverlee, Belgium
[3] Katholieke Univ Leuven, Dept Phys & Astron SPS, B-3001 Heverlee, Belgium
[4] Univ Ghent, B-9000 Ghent, Belgium
关键词
CBRAM; C-AFM; Conductive filament; Resistive switching; GROWTH;
D O I
10.1016/j.mee.2013.06.001
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
One promising technology under consideration for future non-volatile memory is conductive bridging random access memory (CBRAM). These devices rely on a reversible change in resistance of a dielectric layer sandwiched between two metal electrodes. To unravel the underlying processes, we present in this work an innovative technique to observe conductive filament in CBRAM devices programmed under real operative conditions. We show the different properties of the conductive filament for the respective on/off resistive states. We demonstrate a novel usage of scanning probe microscopy whereby the tip is used to remove (de-process) the top electrode of the CBRAM device while subsequently we use conductive atomic force microscopy (C-AFM) to characterize the dielectric layer of fresh, set and reset devices. The devices are first programmed under their normal operational conditions, secondly exposed to the layer removal procedure and finally analyzed using C-AFM. Our results indicate that the on/off state of the devices can be linked to the presence or not of an highly conductive filament. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:67 / 70
页数:4
相关论文
共 50 条
  • [1] The fabrication of devices in silicon using scanning probe microscopy
    Ruess, RJ
    Oberbeck, L
    Simmons, MY
    Goh, KEJ
    Hamilton, AR
    Hallam, T
    Curson, NJ
    Clark, RG
    Smart Structures, Devices, and Systems II, Pt 1 and 2, 2005, 5649 : 306 - 310
  • [2] Scanning probe microscopy for testing ultrafast electronic devices
    Hou, AS
    Nechay, BA
    Ho, F
    Bloom, DM
    OPTICAL AND QUANTUM ELECTRONICS, 1996, 28 (07) : 819 - 841
  • [3] Adaptive Scalpel Scanning Probe Microscopy for Enhanced Volumetric Sensing in Tomographic Analysis
    Laskar, Md Ashiqur Rahman
    Leonetti, Giuseppe
    Milano, Gianluca
    Novotny, Ondrej
    Neuman, Jan
    Tongay, Sefaattin
    Celano, Umberto
    ADVANCED MATERIALS INTERFACES, 2024, 11 (21):
  • [4] Resistive switching memory: observations with scanning probe microscopy
    Lee, Min Hwan
    Hwang, Cheol Seong
    NANOSCALE, 2011, 3 (02) : 490 - 502
  • [5] Fast and reliable method of conductive carbon nanotube-probe fabrication for scanning probe microscopy
    Dremov, Vyacheslav
    Fedoseev, Vitaly
    Fedorov, Pavel
    Grebenko, Artem
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2015, 86 (05):
  • [6] Scanning probe microscopy
    Bottomley, LA
    Coury, JE
    First, PN
    ANALYTICAL CHEMISTRY, 1996, 68 (12) : R185 - R230
  • [7] SCANNING PROBE MICROSCOPY
    LOUDER, DR
    PARKINSON, BA
    ANALYTICAL CHEMISTRY, 1994, 66 (12) : R84 - R105
  • [8] Scanning probe microscopy
    Graduate School of Engineering, Osaka University, Yamada-Oka 2-1, Suita 565-0871, Japan
    Shinku, 2008, 12 (769-770)
  • [9] Scanning probe microscopy
    Colton, RJ
    Baselt, DR
    Dufrene, YF
    Green, JBD
    Lee, GU
    CURRENT OPINION IN CHEMICAL BIOLOGY, 1997, 1 (03) : 370 - 377
  • [10] SCANNING PROBE MICROSCOPY
    MADDOCKS, JL
    HECKL, WM
    LANCET, 1992, 340 (8819): : 600 - 601