The attractors for the regularized Benard problem with fractional Laplacian

被引:0
|
作者
Yue, Gaocheng [1 ]
Wang, Jintao [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211106, Peoples R China
基金
中国国家自然科学基金;
关键词
Benard equations; Global attractor; Exponential attractor; Fractional; Laplacian operator; CAMASSA-HOLM EQUATIONS; 2D BOUSSINESQ EQUATIONS; GLOBAL WELL-POSEDNESS; EXISTENCE; CHANNEL; MODEL;
D O I
10.1016/j.amc.2020.125640
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we will study the existence of the global and exponential attractors for the regularized Benard equations with fractional Laplacian in the three-dimensional case. This system depends on three parameters beta, gamma and delta, which affect the regularity of the solution. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] On a Nonlocal Fractional p(.,.)-Laplacian Problem with Competing Nonlinearities
    Ali, K. B.
    Hsini, M.
    Kefi, K.
    Chung, N. T.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (03) : 1377 - 1399
  • [32] Inverse Source Problem for Sobolev Equation with Fractional Laplacian
    Phuong, Nguyen Duc
    Nguyen, Van Tien
    Long, Le Dinh
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [33] On a Fractional p-Laplacian Problem with Discontinuous Nonlinearities
    Hanaâ Achour
    Sabri Bensid
    Mediterranean Journal of Mathematics, 2021, 18
  • [34] Random attractors of fractional p-Laplacian equation driven by colored noise on Rn
    Li, Fuzhi
    Su, Wenhuo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (05):
  • [35] An inverse problem for semilinear equations involving the fractional Laplacian
    Kow, Pu-Zhao
    Ma, Shiqi
    Sahoo, Suman Kumar
    INVERSE PROBLEMS, 2023, 39 (09)
  • [36] On a Fractional p-Laplacian Problem with Discontinuous Nonlinearities
    Achour, Hanaa
    Bensid, Sabri
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (06)
  • [37] On an eigenvalue problem involving the fractional (s, p)-Laplacian
    Maria Fărcăşeanu
    Fractional Calculus and Applied Analysis, 2018, 21 : 94 - 103
  • [38] Three solutions for a fractional p-Laplacian problem
    Weiqiang Zhang
    Jiabin Zuo
    Peihao Zhao
    Journal of Pseudo-Differential Operators and Applications, 2022, 13
  • [39] An overdetermined problem in Riesz-potential and fractional Laplacian
    Lu, Guozhen
    Zhu, Jiuyi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (06) : 3036 - 3048
  • [40] The Neumann problem for the fractional Laplacian: regularity up to the boundary
    Audrito, Alessandro
    Felipe-Navarro, Juan-Carlos
    Ros-Oton, Xavier
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2023, 24 (02) : 1155 - 1222