An inverse problem for semilinear equations involving the fractional Laplacian

被引:1
|
作者
Kow, Pu-Zhao [1 ]
Ma, Shiqi [2 ]
Sahoo, Suman Kumar [3 ]
机构
[1] Natl Chengchi Univ, Dept Math Sci, Taipei 16302, Taiwan
[2] Jilin Univ, Sch Math, Changchun, Peoples R China
[3] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
基金
芬兰科学院; 欧洲研究理事会;
关键词
fractional Laplacian; fractional Calderon problem; nonlocal semilinear equations; fractional diffusion equation; fractional wave equation; Runge approximation; ELLIPTIC-EQUATIONS; CALDERON PROBLEM; UNIQUENESS;
D O I
10.1088/1361-6420/ace9f4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our work concerns the study of inverse problems of heat and wave equations involving the fractional Laplacian operator with zeroth order nonlinear perturbations. We recover nonlinear terms in the semilinear equations from the knowledge of the fractional Dirichlet-to-Neumann type map combined with the Runge approximation and the unique continuation property of the fractional Laplacian.
引用
收藏
页数:27
相关论文
共 50 条