Geometrically nonlinear beam analysis of composite wind turbine blades based on quadrature element method

被引:18
|
作者
Zhou, Xiandong [1 ]
Huang, Kefu [2 ]
Li, Zheng [1 ]
机构
[1] Peking Univ, Coll Engn, Dept Mech & Engn Sci, Beijing 100871, Peoples R China
[2] Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear; Composite beam; Quadrature element method; Wind turbine blade; ROTOR BLADES; LOAD MITIGATION; MODEL; EQUATIONS;
D O I
10.1016/j.ijnonlinmec.2018.05.007
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A new nonlinear beam theory is proposed for the analysis of composite wind turbine blades. The beam theory is developed by extending classical Euler-Bernoulli beam theory to a generalized Timoshenko beam. Mechanics-based variables are used to describe finite rotation such that the problems of the sequence dependence or spatially discontinuity of rotational variables can be avoided. Furthermore, nonlinear beam theory is implemented using the weak-form quadrature element method. Numerical examples of both non-rotating and rotating beams are given and the comparison with analytical and finite element results shows high computational accuracy and efficiency of the proposed nonlinear quadrature element. A simple parametric study of a virtual 5-MW wind turbine blade shows that bend-twist coupling due to both material anisotropy and geometrical nonlinearity affects the dynamic performance of the blade significantly.
引用
收藏
页码:87 / 99
页数:13
相关论文
共 50 条
  • [41] Non-linear quadrature element analysis of planar frames based on geometrically exact beam theory
    Xiao, Naijia
    Zhong, Hongzhi
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2012, 47 (05) : 481 - 488
  • [42] An optimization method based on the evolutionary and topology approaches to reduce the mass of composite wind turbine blades
    A. E. Albanesi
    I. Peralta
    F. Bre
    B. A. Storti
    V. D. Fachinotti
    Structural and Multidisciplinary Optimization, 2020, 62 : 619 - 643
  • [43] An optimization method based on the evolutionary and topology approaches to reduce the mass of composite wind turbine blades
    Albanesi, A. E.
    Peralta, I.
    Bre, F.
    Storti, B. A.
    Fachinotti, V. D.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 62 (02) : 619 - 643
  • [44] Fatigue analysis of wind turbine composite blade using finite element method
    Boudounit, Hicham
    Tarfaoui, Mostapha
    Saifaoui, Dennoun
    WIND ENGINEERING, 2023, 47 (03) : 706 - 721
  • [45] Design of GRP composite wind turbine blades
    Chen, Yuncheng
    Chen, Yuyue
    Wu, Peichao
    Wind Engineering, 1988, 12 (02) : 125 - 133
  • [46] Using of composite material in wind turbine blades
    Eker, Bülent
    Akdoǧan, Ayşegül
    Vardar, Ali
    Journal of Applied Sciences, 2006, 6 (14) : 2917 - 2921
  • [47] PARAMETRIC STUDY OF COMPOSITE WIND TURBINE BLADES
    Kim, T.
    Branner, K.
    Hansen, A. M.
    COMPOSITE MATERIALS FOR STRUCTURAL PERFORMANCE: TOWARDS HIGHER LIMITS, 2011, : 339 - 350
  • [48] Composite materials for wind power turbine blades
    Brondsted, P
    Lilholt, H
    Lystrup, A
    ANNUAL REVIEW OF MATERIALS RESEARCH, 2005, 35 : 505 - 538
  • [49] Composite Repair in Wind Turbine Blades: An Overview
    Katnam, K. B.
    Comer, A. J.
    Roy, D.
    da Silva, L. F. M.
    Young, T. M.
    JOURNAL OF ADHESION, 2015, 91 (1-2): : 113 - 139
  • [50] Geometrically exact hybrid beam element based on nonlinear programming
    Lyritsakis, Charilaos M.
    Andriotis, Charalampos P.
    Papakonstantinou, Konstantinos G.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (13) : 3273 - 3299