Geometrically nonlinear beam analysis of composite wind turbine blades based on quadrature element method

被引:18
|
作者
Zhou, Xiandong [1 ]
Huang, Kefu [2 ]
Li, Zheng [1 ]
机构
[1] Peking Univ, Coll Engn, Dept Mech & Engn Sci, Beijing 100871, Peoples R China
[2] Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear; Composite beam; Quadrature element method; Wind turbine blade; ROTOR BLADES; LOAD MITIGATION; MODEL; EQUATIONS;
D O I
10.1016/j.ijnonlinmec.2018.05.007
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A new nonlinear beam theory is proposed for the analysis of composite wind turbine blades. The beam theory is developed by extending classical Euler-Bernoulli beam theory to a generalized Timoshenko beam. Mechanics-based variables are used to describe finite rotation such that the problems of the sequence dependence or spatially discontinuity of rotational variables can be avoided. Furthermore, nonlinear beam theory is implemented using the weak-form quadrature element method. Numerical examples of both non-rotating and rotating beams are given and the comparison with analytical and finite element results shows high computational accuracy and efficiency of the proposed nonlinear quadrature element. A simple parametric study of a virtual 5-MW wind turbine blade shows that bend-twist coupling due to both material anisotropy and geometrical nonlinearity affects the dynamic performance of the blade significantly.
引用
收藏
页码:87 / 99
页数:13
相关论文
共 50 条
  • [1] Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory
    Wang, Lin
    Liu, Xiongwei
    Renevier, Nathalie
    Stables, Matthew
    Hall, George M.
    ENERGY, 2014, 76 : 487 - 501
  • [2] Geometrically Nonlinear Quadrature Element Analysis of Partially Composite Beams Based on Reissner's Beam Theory
    Shen Z.
    Xia J.
    Ning P.
    Cheng P.
    Xia, Jun (putian9988@163.com), 1600, Editorial Board of Journal of Basic Science and (28): : 913 - 925
  • [3] Finite Element Analysis of Composite Wind Turbine Blades
    Appadurai, M.
    Raj, E. Fantin Irudaya
    2021 7TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENERGY SYSTEMS (ICEES), 2021, : 585 - 589
  • [4] Geometrically nonlinear quadrature element analysis of composite beams with partial interaction
    Shen, Zhi-Qiang
    Zhong, Hong-Zhi
    Gongcheng Lixue/Engineering Mechanics, 2013, 30 (03): : 270 - 275
  • [5] Beam finite element for wind turbine blade based on geometrically exact beam theory
    Lü, Pin
    Liao, Mingfu
    Xu, Yang
    Yin, Yaojie
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2015, 36 (10): : 2422 - 2428
  • [6] Development of an anisotropic beam finite element for composite wind turbine blades in multibody system
    Kim, Taeseong
    Hansen, Anders M.
    Branner, Kim
    RENEWABLE ENERGY, 2013, 59 : 172 - 183
  • [7] Finite Element Analysis of Wind Turbine Blades
    Zhou, Bo
    Ma, Tian-chang
    Yu, Fang-ai
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTER SCIENCE (AICS 2016), 2016, : 259 - 262
  • [8] Finite element analysis with an improved failure criterion for composite wind turbine blades
    Rajadurai, J. Selwin
    Christopher, T.
    Thanigaiyarasu, G.
    Rao, B. N.
    FORSCHUNG IM INGENIEURWESEN-ENGINEERING RESEARCH, 2008, 72 (04): : 193 - 207
  • [9] Finite element analysis with an improved failure criterion for composite wind turbine blades
    J. Selwin Rajadurai
    T. Christopher
    G. Thanigaiyarasu
    B. Nageswara Rao
    Forschung im Ingenieurwesen, 2008, 72 : 193 - 207
  • [10] ON THE COMBINATION OF GEOMETRICALLY NONLINEAR MODELS AND SUBSTRUCTURING FOR MULTIBODY SIMULATION OF WIND TURBINE BLADES
    Jensen, Christian Sigurd L.
    Pedersen, Rasmus B. E.
    Blanco, Blas
    Escalona, Jose L.
    Balling, Ole
    PROCEEDINGS OF ASME 2022 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2022, VOL 9, 2022,