Finite element approximation of the Neumann eigenvalue problem in domains with multiple cracks

被引:0
|
作者
Belhachmi, Zakaria [1 ]
Bucur, Dorin [1 ]
Sac-Epee, Jean-Marc [1 ]
机构
[1] Univ Metz Ile Saulcy, Dept Math, UMR 7122, CNRS, F-57045 Metz 01, France
关键词
eigenvalues; Neumann-Laplacian; domains with cracks; finite elements method;
D O I
10.1093/imanum/drl002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Neumann-Laplacian eigenvalue problem in domains with multiple cracks. We derive a mixed variational formulation which holds on the whole geometric domain (including the cracks) and implements efficient finite-element discretizations for the computation of eigenvalues. Optimal error estimates are given and several numerical examples are presented, confirming the efficiency of the method. As applications, we numerically investigate the behaviour of the low eigenvalues in domains with a large number of cracks.
引用
收藏
页码:790 / 810
页数:21
相关论文
共 50 条
  • [1] Finite Element Approximation for the Fractional Eigenvalue Problem
    Juan Pablo Borthagaray
    Leandro M. Del Pezzo
    Sandra Martínez
    [J]. Journal of Scientific Computing, 2018, 77 : 308 - 329
  • [2] Finite Element Approximation for the Fractional Eigenvalue Problem
    Pablo Borthagaray, Juan
    Del Pezzo, Leandro M.
    Martinez, Sandra
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (01) : 308 - 329
  • [3] Finite Element Approximation of the Minimal Eigenvalue of a Nonlinear Eigenvalue Problem
    Solov’ev S.I.
    Solov’ev P.S.
    [J]. Lobachevskii Journal of Mathematics, 2018, 39 (7) : 949 - 956
  • [4] Approximation of the Stokes eigenvalue problem on triangular domains using a stabilized finite element method
    Turk, Onder
    [J]. MECCANICA, 2020, 55 (10) : 2021 - 2031
  • [5] Approximation of the Stokes eigenvalue problem on triangular domains using a stabilized finite element method
    Önder Türk
    [J]. Meccanica, 2020, 55 : 2021 - 2031
  • [6] Finite Element Approximation of a Contact Vector Eigenvalue Problem
    Hennie De Schepper
    Roger Van Keer
    [J]. Applications of Mathematics, 2003, 48 (6) : 559 - 571
  • [7] Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods
    Jia, Shanghui
    Xie, Hehu
    Yin, Xiaobo
    Gao, Shaoqin
    [J]. APPLICATIONS OF MATHEMATICS, 2009, 54 (01) : 1 - 15
  • [8] Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods
    Shanghui Jia
    Hehu Xie
    Xiaobo Yin
    Shaoqin Gao
    [J]. Applications of Mathematics, 2009, 54 : 1 - 15
  • [9] Approximation and eigenvalue extrapolation of biharmonic eigenvalue problem by nonconforming finite element methods
    Jia, Shanghui
    Me, Hehu
    Yin, Xiaobo
    Gao, Shaoqin
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (02) : 435 - 448
  • [10] Finite element analysis of a coupling eigenvalue problem on overlapping domains
    De Schepper, H
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 132 (01) : 141 - 153