Comparison of diagnostic markers with repeated measurements: a non-parametric ROC curve approach

被引:0
|
作者
Emir, B
Wieand, S
Jung, SH
Ying, ZL
机构
[1] Bayer Pharmaceut, Stat & Data Syst, W Haven, CT 06516 USA
[2] Univ Pittsburgh, Dept Biostat, Pittsburgh, PA 15261 USA
[3] Indiana Univ, Sch Med, Div Biostat, Indianapolis, IN 46202 USA
[4] Rutgers State Univ, Dept Stat, New Brunswick, NJ 08903 USA
关键词
D O I
10.1002/(SICI)1097-0258(20000229)19:4<511::AID-SIM353>3.0.CO;2-3
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we study a class of non-parametric statistics for comparing diagnostic markers with repeated measurements. Using adapted definitions of specificity and sensitivity, we suggest methods to compare the average of sensitivities across all specificities or a range of specificities. The theory allows for correlations introduced by the fact that markers may be obtained from the same patient at multiple visits and that both markers being compared may be obtained from the same patient. Results of the Monte Carlo simulations and an example from a breast cancer setting are provided. Copyright (C) 2000 John Wiley & Sons, Ltd.
引用
收藏
页码:511 / 523
页数:13
相关论文
共 50 条
  • [1] A study of indices useful for the assessment of diagnostic markers in non-parametric ROC curve analysis
    Alonso, Rosa
    Nakas, Christos T.
    Carmen Pardo, M.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (08) : 2102 - 2113
  • [2] Comparison of ROC curves: Parametric and non-parametric techniques
    Halpern, EJ
    [J]. RADIOLOGY, 2001, 221 : 426 - 426
  • [3] Comparison of non-parametric confidence intervals for the area under the ROC curve of a continuous-scale diagnostic test
    Qin, Gengsheng
    Hotilovac, Lejla
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2008, 17 (02) : 207 - 221
  • [4] ROC curve and covariates: extending induced methodology to the non-parametric framework
    Xose Rodriguez-Alvarez, Maria
    Roca-Pardinas, Javier
    Cadarso-Suarez, Carmen
    [J]. STATISTICS AND COMPUTING, 2011, 21 (04) : 483 - 499
  • [5] ROC curve and covariates: extending induced methodology to the non-parametric framework
    María Xosé Rodríguez-Álvarez
    Javier Roca-Pardiñas
    Carmen Cadarso-Suárez
    [J]. Statistics and Computing, 2011, 21 : 483 - 499
  • [6] Non-parametric interval estimation for the partial area under the ROC curve
    Qin, Gengsheng
    Jin, Xiaoping
    Zhou, Xiao-Hua
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (01): : 17 - 33
  • [7] Non-parametric news impact curve: a variational approach
    Matthieu Garcin
    Clément Goulet
    [J]. Soft Computing, 2020, 24 : 13797 - 13812
  • [8] Non-parametric news impact curve: a variational approach
    Garcin, Matthieu
    Goulet, Clement
    [J]. SOFT COMPUTING, 2020, 24 (18) : 13797 - 13812
  • [9] Non-parametric estimation of finite mixtures from repeated measurements
    Bonhomme, Stephane
    Jochmans, Koen
    Robin, Jean-Marc
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (01) : 211 - 229
  • [10] Comparison of non-parametric methods for assessing classifier performance in terms of ROC parameters
    Yousef, WA
    Wagner, RF
    Loew, MH
    [J]. AIPR 2004: 33rd Applied Imagery Pattern Recognition Workshop, Proceedings: EMERGING TECHNOLOGIES AND APPLICATIONS FOR IMAGERY PATTERN RECOGNITION, 2005, : 190 - 195