Non-parametric estimation of finite mixtures from repeated measurements

被引:29
|
作者
Bonhomme, Stephane [1 ]
Jochmans, Koen [2 ]
Robin, Jean-Marc [2 ,3 ]
机构
[1] Univ Chicago, Chicago, IL 60637 USA
[2] Sci Po, F-75007 Paris, France
[3] UCL, London WC1E 6BT, England
基金
英国经济与社会研究理事会; 欧洲研究理事会;
关键词
Finite mixture; Repeated measurement data; Reweighting; Two-step estimation; IDENTIFICATION; INFERENCE; MODELS; LIKELIHOOD;
D O I
10.1111/rssb.12110
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper provides methods to estimate finite mixtures from data with repeated measurements non-parametrically. We present a constructive identification argument and use it to develop simple two-step estimators of the component distributions and all their functionals. We discuss a computationally efficient method for estimation and derive asymptotic theory. Simulation experiments suggest that our theory provides confidence intervals with good coverage in small samples.
引用
收藏
页码:211 / 229
页数:19
相关论文
共 50 条