Using a direct simulation Monte Carlo approach to model collisions in a buffer gas cell

被引:12
|
作者
Doppelbauer, Maximilian J. [1 ,2 ]
Schullian, Otto [1 ,2 ]
Loreau, Jerome [3 ]
Vaeck, Nathalie [3 ]
van der Avoird, Ad [4 ]
Rennick, Christopher J. [1 ,5 ]
Softley, Timothy P. [6 ]
Heazlewood, Brianna R. [1 ]
机构
[1] Univ Oxford, Dept Chem, Chem Res Lab, 12 Mansfield Rd, Oxford OX1 3TA, England
[2] Swiss Fed Inst Technol, Phys Chem Lab, Vladimir Prelog Weg 2, CH-8093 Zurich, Switzerland
[3] ULB, Serv Chim Quant & Photophys, CP 160-09,50 Ave FD Roosevelt, B-1050 Brussels, Belgium
[4] Radboud Univ Nijmegen, Inst Mol & Mat, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
[5] Natl Phys Lab, Teddington TW11 0LW, Middx, England
[6] Univ Birmingham, Birmingham B15 2TT, W Midlands, England
来源
JOURNAL OF CHEMICAL PHYSICS | 2017年 / 146卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
RELAXATION; MOLECULES; ENERGY; BEAM;
D O I
10.1063/1.4974253
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A direct simulation Monte Carlo (DSMC) method is applied to model collisions between He buffer gas atoms and ammonia molecules within a buffer gas cell. State-to-state cross sections, calculated as a function of the collision energy, enable the inelastic collisions between He and NH3 to be considered explicitly. The inclusion of rotational-state-changing collisions affects the translational temperature of the beam, indicating that elastic and inelastic processes should not be considered in isolation. The properties of the cold molecular beam exiting the cell are examined as a function of the cell parameters and operating conditions; the rotational and translational energy distributions are in accord with experimental measurements. The DSMC calculations show that thermalisation occurs well within the typical 10-20 mm length of many buffer gas cells, suggesting that shorter cells could be employed in many instances-yielding a higher flux of cold molecules. (C) 2017 Author(s).
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Development of an impulsive model of dissociation in direct simulation Monte Carlo
    Luo, Han
    Alexeenko, Alina A.
    Macheret, Sergey O.
    PHYSICS OF FLUIDS, 2019, 31 (08)
  • [32] Distributed and parallel direct simulation Monte Carlo of rarefied gas flows
    Bogdanov, AV
    Bykov, NY
    Lukianov, GA
    HIGH-PERFORMANCE COMPUTING AND NETWORKING, 1998, 1401 : 893 - 895
  • [33] Direct Simulation Monte Carlo Calculation of Rarefied Gas Drag using an Immersed Boundary Method
    Jin, W.
    Kleijn, C. R.
    van Ommen, J. R.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [34] AN HEXAGONAL CELL MODEL FOR MONTE-CARLO SIMULATION
    DESERABLE, D
    DOUSTENS, A
    SIMULATION METHODOLOGIES, LANGUAGES AND ARCHITECTURES AND AI AND GRAPHICS FOR SIMULATION, 1989, : 292 - 297
  • [35] Direct Simulation Monte Carlo Algorithms for Simulation of Non-equilibrium Gas Flows
    Stefanov, S. K.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2010, 1301 : 435 - 445
  • [36] The direct simulation Monte Carlo method
    Alexander, FJ
    Garcia, AL
    COMPUTERS IN PHYSICS, 1997, 11 (06): : 588 - 593
  • [37] Nonlinear acoustic simulations using direct simulation Monte Carlo
    Danforth, A.L. (ald227@psu.edu), 1948, Acoustical Society of America (116):
  • [38] Nonlinear acoustic simulatlions using direct simulation Monte Carlo
    Danforth, AL
    Long, LN
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2004, 116 (04): : 1948 - 1955
  • [39] A Lagrangian modeling approach with the direct simulation Monte-Carlo method for inter-particle collisions in turbulent flow
    Hsu, Chih-Hung
    Chang, Keh-Chin
    ADVANCED POWDER TECHNOLOGY, 2007, 18 (04) : 395 - 426
  • [40] MONTE-CARLO APPROACH TO DIRECT SIMULATION OF ELECTRON PENETRATION IN SOLIDS
    SHIMIZU, R
    KATAOKA, Y
    IKUTA, T
    KOSHIKAWA, T
    HASHIMOTO, H
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1976, 9 (01) : 101 - 114