Using a direct simulation Monte Carlo approach to model collisions in a buffer gas cell

被引:12
|
作者
Doppelbauer, Maximilian J. [1 ,2 ]
Schullian, Otto [1 ,2 ]
Loreau, Jerome [3 ]
Vaeck, Nathalie [3 ]
van der Avoird, Ad [4 ]
Rennick, Christopher J. [1 ,5 ]
Softley, Timothy P. [6 ]
Heazlewood, Brianna R. [1 ]
机构
[1] Univ Oxford, Dept Chem, Chem Res Lab, 12 Mansfield Rd, Oxford OX1 3TA, England
[2] Swiss Fed Inst Technol, Phys Chem Lab, Vladimir Prelog Weg 2, CH-8093 Zurich, Switzerland
[3] ULB, Serv Chim Quant & Photophys, CP 160-09,50 Ave FD Roosevelt, B-1050 Brussels, Belgium
[4] Radboud Univ Nijmegen, Inst Mol & Mat, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
[5] Natl Phys Lab, Teddington TW11 0LW, Middx, England
[6] Univ Birmingham, Birmingham B15 2TT, W Midlands, England
来源
JOURNAL OF CHEMICAL PHYSICS | 2017年 / 146卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
RELAXATION; MOLECULES; ENERGY; BEAM;
D O I
10.1063/1.4974253
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A direct simulation Monte Carlo (DSMC) method is applied to model collisions between He buffer gas atoms and ammonia molecules within a buffer gas cell. State-to-state cross sections, calculated as a function of the collision energy, enable the inelastic collisions between He and NH3 to be considered explicitly. The inclusion of rotational-state-changing collisions affects the translational temperature of the beam, indicating that elastic and inelastic processes should not be considered in isolation. The properties of the cold molecular beam exiting the cell are examined as a function of the cell parameters and operating conditions; the rotational and translational energy distributions are in accord with experimental measurements. The DSMC calculations show that thermalisation occurs well within the typical 10-20 mm length of many buffer gas cells, suggesting that shorter cells could be employed in many instances-yielding a higher flux of cold molecules. (C) 2017 Author(s).
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Gas flow analysis in in/microchannels with bends using direct simulation Monte Carlo method
    Wang, M
    Wang, JK
    Li, ZX
    PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON HEAT TRANSFER ENHANCEMENT AND ENERGY CONSERVATION, VOLS 1 AND 2, 2004, : 3 - 9
  • [22] Determination of slip coefficient for rarefied gas flows using direct simulation Monte Carlo
    Pan, LS
    Liu, GR
    Lam, KY
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 1999, 9 (01) : 89 - 96
  • [23] Modeling of molecular nitrogen collisions and dissociation processes for direct simulation Monte Carlo
    Parsons, Neal
    Levin, Deborah A.
    van Duin, Adri C. T.
    Zhu, Tong
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (23):
  • [24] Simulation of gas diffusion in highly porous nanostructures by direct simulation Monte Carlo
    Dreyer, Jochen A. H.
    Riefler, Norbert
    Pesch, Georg R.
    Karamehmedovic, Mirza
    Fritsching, Udo
    Teoh, Wey Yang
    Maedler, Ludz
    CHEMICAL ENGINEERING SCIENCE, 2014, 105 : 69 - 76
  • [25] A Direct Simulation Monte Carlo Approach for the Analysis of Granular Damping
    Fang, X.
    Tang, J.
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2007, 2 (02): : 180 - 189
  • [26] EXPERIMENTAL VALIDATION OF A DIRECT SIMULATION BY MONTE-CARLO MOLECULAR GAS-FLOW MODEL
    SHUFFLEBOTHAM, PK
    BARTEL, TJ
    BERNEY, B
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1995, 13 (04): : 1862 - 1866
  • [27] MONTE-CARLO SIMULATION OF COULOMB COLLISIONS
    SAMEC, TK
    MARGULIES, R
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (09): : 1136 - 1136
  • [28] Multilevel Monte Carlo simulation of Coulomb collisions
    Rosin, M. S.
    Ricketson, L. F.
    Dimits, A. M.
    Caflisch, R. E.
    Cohen, B. I.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 274 : 140 - 157
  • [29] Direct Simulation Monte Carlo for cluster growth process in rarefied gas
    Jin, Y
    Mizuseki, H
    Kawazoe, Y
    MATERIALS TRANSACTIONS, 2001, 42 (11) : 2295 - 2298
  • [30] Monte Carlo simulation of Schottky contact with direct tunnelling model
    Sun, L
    Liu, XY
    Liu, M
    Du, G
    Han, RQ
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2003, 18 (06) : 576 - 581