Using a direct simulation Monte Carlo approach to model collisions in a buffer gas cell

被引:12
|
作者
Doppelbauer, Maximilian J. [1 ,2 ]
Schullian, Otto [1 ,2 ]
Loreau, Jerome [3 ]
Vaeck, Nathalie [3 ]
van der Avoird, Ad [4 ]
Rennick, Christopher J. [1 ,5 ]
Softley, Timothy P. [6 ]
Heazlewood, Brianna R. [1 ]
机构
[1] Univ Oxford, Dept Chem, Chem Res Lab, 12 Mansfield Rd, Oxford OX1 3TA, England
[2] Swiss Fed Inst Technol, Phys Chem Lab, Vladimir Prelog Weg 2, CH-8093 Zurich, Switzerland
[3] ULB, Serv Chim Quant & Photophys, CP 160-09,50 Ave FD Roosevelt, B-1050 Brussels, Belgium
[4] Radboud Univ Nijmegen, Inst Mol & Mat, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
[5] Natl Phys Lab, Teddington TW11 0LW, Middx, England
[6] Univ Birmingham, Birmingham B15 2TT, W Midlands, England
来源
JOURNAL OF CHEMICAL PHYSICS | 2017年 / 146卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
RELAXATION; MOLECULES; ENERGY; BEAM;
D O I
10.1063/1.4974253
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A direct simulation Monte Carlo (DSMC) method is applied to model collisions between He buffer gas atoms and ammonia molecules within a buffer gas cell. State-to-state cross sections, calculated as a function of the collision energy, enable the inelastic collisions between He and NH3 to be considered explicitly. The inclusion of rotational-state-changing collisions affects the translational temperature of the beam, indicating that elastic and inelastic processes should not be considered in isolation. The properties of the cold molecular beam exiting the cell are examined as a function of the cell parameters and operating conditions; the rotational and translational energy distributions are in accord with experimental measurements. The DSMC calculations show that thermalisation occurs well within the typical 10-20 mm length of many buffer gas cells, suggesting that shorter cells could be employed in many instances-yielding a higher flux of cold molecules. (C) 2017 Author(s).
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A Direct Simulation Monte Carlo Approach on the Riemann Problem for Gas Mixtures
    Meskos, S.
    Stefanov, S.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2019, 2164
  • [2] Simulating rotationally inelastic collisions using a direct simulation Monte Carlo method
    Schullian, O.
    Loreau, J.
    Vaeck, N.
    van der Avoird, A.
    Heazlewood, B. R.
    Rennick, C. J.
    Softley, T. P.
    MOLECULAR PHYSICS, 2015, 113 (24) : 3972 - 3978
  • [3] Gas mixing in microchannels using the direct simulation Monte Carlo method
    Wang, M
    Li, ZX
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (9-10) : 1696 - 1702
  • [4] FALSE COLLISIONS IN THE DIRECT SIMULATION MONTE-CARLO METHOD
    NANBU, K
    IGARASHI, S
    WATANABE, Y
    PHYSICS OF FLUIDS, 1988, 31 (07) : 2047 - 2048
  • [5] Monte Carlo simulation of ion beam and background gas collisions
    Cai, Shixian
    Wang, Kedong
    Huang, Wei
    Wang, Jinghui
    Wang, Kai
    Fu, Dongpo
    Li, Jie
    Zhang, Caijie
    Zhu, Tingru
    Xu, Zhiying
    Zhu, Kun
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2025, 28 (03)
  • [6] GAS PROPERTIES EFFECTS IN MICROCHANNEL STUDIES USING DIRECT SIMULATION MONTE CARLO
    Darbandi, Masoud
    Karchani, Abolfazl
    Akhlaghi, Hassan
    Schneider, Gerry
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS AND MINICHANNELS, 2010, PTS A AND B, 2011, : 1021 - 1027
  • [7] Simulations for gas flows in microgeometries using the direct simulation Monte Carlo method
    Wang, MR
    Li, ZX
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2004, 25 (06) : 975 - 985
  • [8] Binary gas mixture flow using the direct simulation Monte Carlo method
    Institute of Engineering Thermophysics, Chinese Acad. of Sci., Beijing 100080, China
    不详
    不详
    Kung Cheng Je Wu Li Hsueh Pao, 2008, 4 (579-582):
  • [9] FALSE COLLISIONS IN THE DIRECT SIMULATION MONTE-CARLO METHOD - COMMENT
    BIRD, GA
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1989, 1 (05): : 897 - 897
  • [10] Numerical simulation of gas flow and mixing in a microchannel using the direct simulation Monte Carlo method
    Yan, F
    Farouk, B
    MICROSCALE THERMOPHYSICAL ENGINEERING, 2002, 6 (03): : 235 - 251