Functional clustering and missing value imputation of traffic flow trajectories

被引:6
|
作者
Li, Pai-Ling [1 ]
Chiou, Jeng-Min [2 ]
机构
[1] Tamkang Univ, Dept Stat, New Taipei, Taiwan
[2] Acad Sinica, Inst Stat Sci, Taipei, Taiwan
关键词
Functional data analysis; missing value; principal component analysis; traffic flow rate; unsupervised learning; vehicle loop detector;
D O I
10.1080/21680566.2020.1781706
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Patterns of traffic flow trajectories play an essential role in analysing traffic monitoring data in transportation studies. This research presents a data-adaptive clustering approach to explore traffic flow patterns and a unified algorithm to impute missing values for incomplete traffic flow trajectories. We recommend using subspace-projected functional data clustering with the assumption that each observed daily traffic flow trajectory is a realization of a random function sampled from a mixture of stochastic processes, and each subprocess represents a cluster subspace spanned by the mean function and eigenfunctions of the covariance kernel of the random trajectories. The unified algorithm combines probabilistic functional clustering with functional principal component analysis to propose a mixture prediction for missing value imputation. The proposed methods effectively unravel distinctive daily traffic flow patterns and improve the accuracy of missing value imputation. The advantage of the proposed approaches is demonstrated through numerical studies of a real traffic flow data application.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [41] Instance driven clustering for the imputation of missing data in KDD
    Ilango, P.
    Vijayakumar, K.
    Babu, M. Rajasekhara
    [J]. INTERNATIONAL JOURNAL OF COMMUNICATION NETWORKS AND DISTRIBUTED SYSTEMS, 2014, 12 (01) : 69 - 81
  • [42] Imputation of missing traffic data during holiday periods
    Liu, Zhaobin
    Sharma, Satish
    Datla, Sandeep
    [J]. TRANSPORTATION PLANNING AND TECHNOLOGY, 2008, 31 (05) : 525 - 544
  • [43] Missing Value Imputation Using Correlation Coefficient
    Manna, Sweta
    Pati, Soumen Kumar
    [J]. COMPUTATIONAL INTELLIGENCE IN PATTERN RECOGNITION, CIPR 2020, 2020, 1120 : 551 - 558
  • [44] The importance of batch sensitization in missing value imputation
    Hui, Harvard Wai Hann
    Kong, Weijia
    Peng, Hui
    Goh, Wilson Wen Bin
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [45] Missing value imputation strategies for metabolomics data
    Grace Armitage, Emily
    Godzien, Joanna
    Alonso-Herranz, Vanesa
    Lopez-Gonzalvez, Angeles
    Barbas, Coral
    [J]. ELECTROPHORESIS, 2015, 36 (24) : 3050 - 3060
  • [46] Automatic Imputation of Missing Highway Traffic Volume Data
    Elshenawy, Mohamed
    El-darieby, Mohamed
    Abdulhai, Baher
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS (PERCOM WORKSHOPS), 2018,
  • [47] A Comprehensive Bibliometric Analysis of Missing Value Imputation
    Nugroho, Heru
    Surendro, Kridanto
    [J]. IEEE ACCESS, 2024, 12 : 14819 - 14846
  • [48] Missing value imputation using genetic algorithm
    Hengpraphrom, Kairijng
    Wlchian, Sageemas Na
    Meesad, Phayijng
    [J]. ICIC Express Letters, 2011, 5 (02): : 355 - 360
  • [49] Optimization of missing value imputation for neural networks
    Han, Jongmin
    Kang, Seokho
    [J]. INFORMATION SCIENCES, 2023, 649
  • [50] Missing Value Imputation: With Application to Handwriting Data
    Xu, Zhen
    Srihari, Sargur N.
    [J]. DOCUMENT RECOGNITION AND RETRIEVAL XXII, 2015, 9402