Supernovae and Dark Energy

被引:0
|
作者
Dominguez, Inma [1 ]
Bravo, Eduardo [2 ]
Piersanti, Luciano [3 ]
Straniero, Oscar [3 ]
Tornambe, Amedeo [3 ]
机构
[1] Univ Granada, Dpto Fis Teor & Cosmos, E-18071 Granada, Spain
[2] Univ Politecn Cataluna, Dept Fis & Engn Nucl, E-08028 Barcelona, Spain
[3] Osservatorio Astron Collurania INAF, I-64100 Teramo, Italy
来源
COSMOLOGY ACROSS CULTURES | 2009年 / 409卷
关键词
IA SN PROGENITORS; LIGHT CURVES; CONSTRAINTS; EXPLOSION; MODELS;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A decade ago the observations of thermonuclear supernovae at high-redhifts showed that the expansion rate of the Universe is accelerating and since then, the evidence for cosmic acceleration has gotten stronger. This acceleration requires that the Universe is dominated by dark energy, an exotic component characterized by its negative pressure. Nowadays all the available astronomical data (i.e. thermonuclear supernovae, cosmic microwave background, barionic acoustic oscillations, large scale structure, etc.) agree that our Universe is made of about 70% of dark energy, 25% of cold dark matter and only 5% of known, familiar matter. This Universe is geometrically flat, older than previously thought, its destiny is no longer linked to its geometry but to dark energy, and we ignore about 95% of its components. To understand the nature of dark energy is probably the most fundamental problem in physics today. Current astronomical observations are compatible with dark energy being the vacuum energy. Supernovae have played a fundamental role in modern Cosmology and it is expected that they will contribute to unveil the dark energy. In order to do that it is mandatory to understand the limits of supernovae as cosmological distance indicators, improving their precision by a factor 10.
引用
收藏
页码:42 / +
页数:2
相关论文
共 50 条
  • [41] On redshift evolution and negative dark energy density in Pantheon plus Supernovae
    Malekjani, M.
    Mc Conville, R.
    Colgain, E.
    Pourojaghi, S.
    Sheikh-Jabbari, M. M.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (03):
  • [42] Genetic Algorithms and Supernovae Type Ia Analysis, Constraints on Dark Energy
    Bogdanos, Charalampos
    Nesseris, Savvas
    [J]. INVISIBLE UNIVERSE INTERNATIONAL CONFERENCE, 2010, 1241 : 200 - 208
  • [43] Constraining Dark Energy and Cosmological Transition Redshift with Type Ia Supernovae
    Fa-Yin Wang and Zi-Gao Dai Department of Astronomy
    [J]. Research in Astronomy and Astrophysics, 2006, (05) : 561 - 571
  • [44] Large evidence for dark energy from a study of type Ia supernovae
    Goldhaber, G
    [J]. RECENT DEVELOPMENTS IN PARTICLE PHYSICS AND COSMOLOGY, 2001, 34 : 315 - 330
  • [45] Rates and delay times of Type Ia supernovae in the Dark Energy Survey
    Wiseman, P.
    Sullivan, M.
    Smith, M.
    Frohmaier, C.
    Vincenzi, M.
    Graur, O.
    Popovic, B.
    Armstrong, P.
    Brout, D.
    Davis, T. M.
    Galbany, L.
    Hinton, S. R.
    Kelsey, L.
    Kessler, R.
    Lidman, C.
    Moller, A.
    Nichol, R. C.
    Rose, B.
    Scolnic, D.
    Toy, M.
    Zontou, Z.
    Asorey, J.
    Carollo, D.
    Glazebrook, K.
    Lewis, G. F.
    Tucker, B. E.
    Abbott, T. M. C.
    Aguena, M.
    Allam, S.
    Andrade-Oliveira, F.
    Annis, J.
    Bacon, D.
    Bertin, E.
    Brooks, D.
    Buckley-Geer, E.
    Burke, D. L.
    Rosell, A. Carnero
    Kind, M. Carrasco
    Carretero, J.
    Costanzi, M.
    da Costa, L. N.
    Pereira, M. E. S.
    Desai, S.
    Diehl, H. T.
    Doel, P.
    Everett, S.
    Ferrero, I
    Flaugher, B.
    Fosalba, P.
    Frieman, J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 506 (03) : 3330 - 3348
  • [46] Uncorrelated measurements of the cosmic expansion history and dark energy from supernovae
    Wang, Y
    Tegmark, M
    [J]. PHYSICAL REVIEW D, 2005, 71 (10):
  • [47] Dark energy constraints from Pantheon plus Ia supernovae data
    Torres-Arzayus, Sergio
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2024, 369 (02)
  • [48] Weak lensing of Type Ia Supernovae from the Dark Energy Survey
    Macaulay, E.
    Bacon, D.
    Nichol, R. C.
    Davis, T. M.
    Elvin-Poole, J.
    Brout, D.
    Carollo, D.
    Glazebrook, K.
    Hinton, S. R.
    Lewis, G. F.
    Lidman, C.
    Moller, A.
    Sako, M.
    Scolnic, D.
    Smith, M.
    Sommer, N. E.
    Tucker, B. E.
    Abbott, T. M. C.
    Aguena, M.
    Annis, J.
    Avila, S.
    Bertin, E.
    Bhargava, S.
    Brooks, D.
    Burke, D. L.
    Rosell, A. Carnero
    Kind, M. Carrasco
    Carretero, J.
    Castander, F. J.
    Costanzi, M.
    da Costa, L. N.
    Desai, S.
    Diehl, H. T.
    Doel, P.
    Flaugher, B.
    Foley, R. J.
    Garcia-Bellido, J.
    Gaztanaga, E.
    Gerdes, D. W.
    Gruen, D.
    Gruendl, R. A.
    Gschwend, J.
    Gutierrez, G.
    Hollowood, D. L.
    Honscheid, K.
    Huterer, D.
    James, D. J.
    Kuehn, K.
    Kuropatkin, N.
    Lahav, O.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 496 (03) : 4051 - 4059
  • [49] Dark energy constraints from Pantheon+ Ia supernovae data
    Sergio Torres-Arzayus
    [J]. Astrophysics and Space Science, 2024, 369
  • [50] Dark matter triggers of supernovae
    Graham, Peter W.
    Rajendran, Surjeet
    Varela, Jaime
    [J]. PHYSICAL REVIEW D, 2015, 92 (06):