Dark energy constraints from Pantheon+ Ia supernovae data

被引:0
|
作者
Sergio Torres-Arzayus
机构
[1] International Center for Relativistic Astrophysics Network,
来源
关键词
Cosmology; Dark energy; Hubble tension; Hubble constant; Cosmological parameters;
D O I
暂无
中图分类号
学科分类号
摘要
Measurements of the current expansion rate of the Universe, H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{0}$\end{document}, using standard candles, disagree with those derived from observations of the Cosmic Microwave Background (CMB). This discrepancy, known as the Hubble tension, is substantial and suggests the possibility of revisions to the standard cosmological model (Cosmological constant Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda $\end{document} and cold dark matter – ΛCDM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda CDM$\end{document}). Dynamic dark energy (DE) models that introduce deviations in the expansion history relative to ΛCDM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda CDM$\end{document} could potentially explain this tension. We used Type Ia supernovae (SNe) data to test a dynamic DE model consisting of an equation of state that varies linearly with the cosmological scale factor a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a$\end{document}. To evaluate this model, we developed a new statistic (the Tα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\alpha }$\end{document} statistic) used in conjunction with an optimization code that minimizes its value to obtain model parameters. The Tα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\alpha }$\end{document} statistic reduces bias errors (in comparison to the χ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi ^{2}$\end{document} statistic) because it retains the sign of the residuals, which is meaningful in testing the dynamic DE model as the deviations in the expansion history introduced by this model act asymmetrically in redshift space. The DE model fits the SNe data reasonably well, but the available SNe data lacks the statistical power to discriminate between ΛCDM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda CDM$\end{document} and alternative models. To further assess the model using CMB data, we computed the distance to the last scattering surface and compared the results with that derived from the Planck observations. Although the simple dynamic DE model tested does not completely resolve the tension, it is not ruled out by the data and could still play a role alongside other physical effects.
引用
收藏
相关论文
共 50 条
  • [1] Dark energy constraints from Pantheon plus Ia supernovae data
    Torres-Arzayus, Sergio
    ASTROPHYSICS AND SPACE SCIENCE, 2024, 369 (02)
  • [2] Testing the Phenomenological Interacting Dark Energy Model with Gamma-Ray Bursts and Pantheon+ type Ia Supernovae
    XiaoDong Nong
    Nan Liang
    Research in Astronomy and Astrophysics, 2024, 24 (12) : 26 - 32
  • [3] Non-parametric reconstruction of dark energy and cosmic expansion from the Pantheon compilation of type Ia supernovae
    林海南
    李昕
    唐丽
    Chinese Physics C, 2019, 43 (07) : 107 - 115
  • [4] Non-parametric reconstruction of dark energy and cosmic expansion from the Pantheon compilation of type Ia supernovae
    Lin, Hai-Nan
    Li, Xin
    Tang, Li
    CHINESE PHYSICS C, 2019, 43 (07)
  • [5] Constraints on the local cosmic void from the Pantheon supernovae data
    Wang, Ke
    Chen, Kun-Peng
    Le Delliou, Morgan
    EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (09):
  • [6] Constraints on the local cosmic void from the Pantheon supernovae data
    Ke Wang
    Kun-Peng Chen
    Morgan Le Delliou
    The European Physical Journal C, 83
  • [7] Investigating dark energy by electromagnetic frequency shifts II: the Pantheon+ sample
    Giuseppe Sarracino
    Alessandro D. A. M. Spallicci
    Salvatore Capozziello
    The European Physical Journal Plus, 137
  • [8] Genetic Algorithms and Supernovae Type Ia Analysis, Constraints on Dark Energy
    Bogdanos, Charalampos
    Nesseris, Savvas
    INVISIBLE UNIVERSE INTERNATIONAL CONFERENCE, 2010, 1241 : 200 - 208
  • [9] Holographic Dark Energy Model is Consistent with Pantheon SN Ia Data
    Li, Xin
    Zhao, Su-Ping
    Tang, Li
    Lin, Hai-Nan
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (04) : 421 - 426
  • [10] Holographic Dark Energy Model is Consistent with Pantheon SN Ia Data
    李昕
    赵素平
    唐丽
    林海南
    CommunicationsinTheoreticalPhysics, 2019, 71 (04) : 421 - 426