Dark energy constraints from Pantheon+ Ia supernovae data

被引:0
|
作者
Sergio Torres-Arzayus
机构
[1] International Center for Relativistic Astrophysics Network,
来源
关键词
Cosmology; Dark energy; Hubble tension; Hubble constant; Cosmological parameters;
D O I
暂无
中图分类号
学科分类号
摘要
Measurements of the current expansion rate of the Universe, H0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H_{0}$\end{document}, using standard candles, disagree with those derived from observations of the Cosmic Microwave Background (CMB). This discrepancy, known as the Hubble tension, is substantial and suggests the possibility of revisions to the standard cosmological model (Cosmological constant Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda $\end{document} and cold dark matter – ΛCDM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda CDM$\end{document}). Dynamic dark energy (DE) models that introduce deviations in the expansion history relative to ΛCDM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda CDM$\end{document} could potentially explain this tension. We used Type Ia supernovae (SNe) data to test a dynamic DE model consisting of an equation of state that varies linearly with the cosmological scale factor a\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a$\end{document}. To evaluate this model, we developed a new statistic (the Tα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\alpha }$\end{document} statistic) used in conjunction with an optimization code that minimizes its value to obtain model parameters. The Tα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T_{\alpha }$\end{document} statistic reduces bias errors (in comparison to the χ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi ^{2}$\end{document} statistic) because it retains the sign of the residuals, which is meaningful in testing the dynamic DE model as the deviations in the expansion history introduced by this model act asymmetrically in redshift space. The DE model fits the SNe data reasonably well, but the available SNe data lacks the statistical power to discriminate between ΛCDM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Lambda CDM$\end{document} and alternative models. To further assess the model using CMB data, we computed the distance to the last scattering surface and compared the results with that derived from the Planck observations. Although the simple dynamic DE model tested does not completely resolve the tension, it is not ruled out by the data and could still play a role alongside other physical effects.
引用
收藏
相关论文
共 50 条
  • [21] Distance measurements from supernovae and dark energy constraints
    Wang, Yun
    PHYSICAL REVIEW D, 2009, 80 (12):
  • [22] Comparison of the legacy and gold type Ia supernovae dataset constraints on dark energy models
    Nesseris, S
    Perivolaropoulos, L
    PHYSICAL REVIEW D, 2005, 72 (12)
  • [23] Testing the Phenomenological Interacting Dark Energy Model with Gamma-Ray Bursts and Pantheon plus type Ia Supernovae
    Nong, Xiao-Dong
    Liang, Nan
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2024, 24 (12)
  • [24] TYPE-IA SUPERNOVAE - CONSTRAINTS ON BARYONIC DARK MATTER
    SMECKER, TA
    WYSE, RFG
    ASTROPHYSICAL JOURNAL, 1991, 372 (02): : 448 - 454
  • [25] First Cosmology Results using Type Ia Supernovae from the Dark Energy Survey: Constraints on Cosmological Parameters
    Abbott, T. M. C.
    Allam, S.
    Andersen, P.
    Angus, C.
    Asorey, J.
    Avelino, A.
    Avila, S.
    Bassett, B. A.
    Bechtol, K.
    Bernstein, G. M.
    Bertin, E.
    Brooks, D.
    Brout, D.
    Brown, P.
    Burke, D. L.
    Calcino, J.
    Carnero Rosell, A.
    Carollo, D.
    Kind, M. Carrasco
    Carretero, J.
    Casas, R.
    Castander, F. J.
    Cawthon, R.
    Challis, P.
    Childress, M.
    Clocchiatti, A.
    Cunha, C. E.
    D'Andrea, C. B.
    da Costa, L. N.
    Davis, C.
    Davis, T. M.
    De Vicente, J.
    DePoy, D. L.
    Desai, S.
    Diehl, H. T.
    Doel, P.
    Drlica-Wagner, A.
    Eifler, T. F.
    Evrard, A. E.
    Fernandez, E.
    Filippenko, A., V
    Finley, D. A.
    Flaugher, B.
    Foley, R. J.
    Fosalba, P.
    Frieman, J.
    Galbany, L.
    Garcia-Bellido, J.
    Gaztanaga, E.
    Giannantonio, T.
    ASTROPHYSICAL JOURNAL LETTERS, 2019, 872 (02)
  • [26] The accelerating Universe and dark energy: Evidence from type Ia supernovae
    Filippenko, AV
    EARLY UNIVERSE AND OBSERVATIONAL COSMOLOGY, 2004, 646 : 191 - 221
  • [27] Weak lensing of Type Ia Supernovae from the Dark Energy Survey
    Macaulay, E.
    Bacon, D.
    Nichol, R. C.
    Davis, T. M.
    Elvin-Poole, J.
    Brout, D.
    Carollo, D.
    Glazebrook, K.
    Hinton, S. R.
    Lewis, G. F.
    Lidman, C.
    Moller, A.
    Sako, M.
    Scolnic, D.
    Smith, M.
    Sommer, N. E.
    Tucker, B. E.
    Abbott, T. M. C.
    Aguena, M.
    Annis, J.
    Avila, S.
    Bertin, E.
    Bhargava, S.
    Brooks, D.
    Burke, D. L.
    Rosell, A. Carnero
    Kind, M. Carrasco
    Carretero, J.
    Castander, F. J.
    Costanzi, M.
    da Costa, L. N.
    Desai, S.
    Diehl, H. T.
    Doel, P.
    Flaugher, B.
    Foley, R. J.
    Garcia-Bellido, J.
    Gaztanaga, E.
    Gerdes, D. W.
    Gruen, D.
    Gruendl, R. A.
    Gschwend, J.
    Gutierrez, G.
    Hollowood, D. L.
    Honscheid, K.
    Huterer, D.
    James, D. J.
    Kuehn, K.
    Kuropatkin, N.
    Lahav, O.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 496 (03) : 4051 - 4059
  • [28] Large evidence for dark energy from a study of type Ia supernovae
    Goldhaber, G
    RECENT DEVELOPMENTS IN PARTICLE PHYSICS AND COSMOLOGY, 2001, 34 : 315 - 330
  • [29] On redshift evolution and negative dark energy density in Pantheon plus Supernovae
    Malekjani, M.
    Mc Conville, R.
    Colgain, E.
    Pourojaghi, S.
    Sheikh-Jabbari, M. M.
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (03):
  • [30] Fitting type Ia supernovae with coupled dark energy
    Amendola, L
    Gasperini, M
    Piazza, F
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2004, (09): : 225 - 236