Stability of a Continuous Reaction-Diffusion Cournot-Kopel Duopoly Game Model

被引:14
|
作者
Rionero, Salvatore [1 ,2 ]
Torcicollo, Isabella [3 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Naples, Italy
[2] Accademia Nazl Lincei, I-00165 Rome, Italy
[3] CNR, Ist Applicaz Calcolo M Picone, Via P Castellino 111, I-80131 Naples, Italy
关键词
Continuous Cournot-Kopel model; Nonlinear duopoly game; Nonlinear stability; Nonautonomous binary dynamical systems of PDEs; Self-diffusion; Cross-diffusion; Liapunov Direct Method; NONLINEAR L-2-STABILITY ANALYSIS; DYNAMICS; SYSTEM;
D O I
10.1007/s10440-014-9932-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In order to take into account the territory in which the outputs are in the market and the time-depending firms' strategies, the discrete Cournot duopoly game (with adaptive expectations, modeled by Kopel) is generalized through a non autonomous reaction-diffusion binary system of PDEs, with self and cross diffusion terms. Linear and nonlinear asymptotic L (2)-stability, via the Liapunov Direct Methot and a nonautonomous energy functional, are investigated.
引用
收藏
页码:505 / 513
页数:9
相关论文
共 50 条
  • [41] The stability of Bayesian Nash equilibrium of dynamic Cournot duopoly model with asymmetric information
    Yu, Weisheng
    Yu, Yu
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 63 : 101 - 116
  • [42] Nonlinear Stability for Reaction-Diffusion Models
    Mulone, G.
    [J]. NEW TRENDS IN FLUID AND SOLID MODELS, 2010, : 91 - 101
  • [43] A stability approach for reaction-diffusion problems
    Fekete, I
    Farago, I
    [J]. 2013 IEEE 8TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI 2013), 2013, : 191 - 195
  • [44] NOISE AND STABILITY IN REACTION-DIFFUSION EQUATIONS
    Lv, Guangying
    Wei, Jinlong
    Zou, Guang-an
    [J]. MATHEMATICAL CONTROL AND RELATED FIELDS, 2022, 12 (01) : 147 - 168
  • [45] On the stability of binary reaction-diffusion systems
    Rionero, S
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (7-9): : 773 - 784
  • [46] STABILITY AND BIFURCATION OF A REACTION-DIFFUSION SYSTEM
    HARITI, A
    CHERRUAULT, Y
    [J]. INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING, 1991, 29 (02): : 77 - 94
  • [47] REACTION-DIFFUSION MODEL FOR PHYLLOTAXIS
    BERNASCONI, GP
    [J]. PHYSICA D, 1994, 70 (1-2): : 90 - 99
  • [48] A STOCHASTIC REACTION-DIFFUSION MODEL
    KOTELENEZ, P
    [J]. LECTURE NOTES IN MATHEMATICS, 1989, 1390 : 132 - 137
  • [49] Complexity study on the Cournot-Bertrand mixed duopoly game model with market share preference
    Ma, Junhai
    Sun, Lijian
    Hou, Shunqi
    Zhan, Xueli
    [J]. CHAOS, 2018, 28 (02)
  • [50] Global existence and stability of solution of a reaction-diffusion model for cancer invasion
    Fu, Shengmao
    Cui, Shangbin
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (03) : 1362 - 1369