Real zeros of random Dirichlet series

被引:7
|
作者
Aymone, Marco [1 ]
机构
[1] Univ Fed Minas Gerais, Belo Horizonte, MG, Brazil
来源
ELECTRONIC COMMUNICATIONS IN PROBABILITY | 2019年 / 24卷
关键词
random series; zeros of random analytic functions; Dirichlet series;
D O I
10.1214/19-ECP260
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let F(sigma) be the random Dirichlet series F(sigma) = Sigma(p is an element of P) X-p/p(sigma), where P is an increasing sequence of positive real numbers and (X (p) ) (p is an element of P) is a sequence of i.i.d. random variables with IP(X-1 = 1) = IP(X-1 = -1) = 1/2. We prove that, for certain conditions on P, if Sigma(p is an element of P) 1/p < infinity then with positive probability F(sigma) has no real zeros while if Sigma(p is an element of P) 1/p = infinity, almost surely F(sigma) has an infinite number of real zeros.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] On the Epstein zeta function and the zeros of a class of Dirichlet series
    Ribeiro, Pedro
    Yakubovich, Semyon
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (01)
  • [42] ON THE ZEROS OF ARITHMETIC DIRICHLET SERIES WITHOUT EULER PRODUCT
    KARATSUBA, AA
    RUSSIAN ACADEMY OF SCIENCES IZVESTIYA MATHEMATICS, 1994, 43 (02): : 193 - 203
  • [43] Zeros of a geometric series with random signs
    Holzsager, R
    Lobo, J
    AMERICAN MATHEMATICAL MONTHLY, 1997, 104 (02): : 173 - 174
  • [44] DIRICHLET SERIES WITH REAL COEFFICIENTS
    Aitkuzhina, N. N.
    Gaisin, A. M.
    UFA MATHEMATICAL JOURNAL, 2013, 5 (03): : 3 - 10
  • [45] Real zeros of quadratic Dirichlet L-functions
    Conrey, JB
    Soundararajan, K
    INVENTIONES MATHEMATICAE, 2002, 150 (01) : 1 - 44
  • [46] Real zeros of quadratic Dirichlet L-functions
    J.B. Conrey
    K. Soundararajan
    Inventiones mathematicae, 2002, 150 : 1 - 44
  • [47] Real zeros of random trigonometric polynomials
    Bozeman, RE
    Farahmand, K
    Sambandham, M
    NEURAL, PARALLEL, AND SCIENTIFIC COMPUTATIONS, VOL 2, PROCEEDINGS, 2002, : 75 - 78
  • [48] REAL ZEROS OF A RANDOM ALGEBRAIC POLYNOMIAL
    SAMAL, G
    MISHRA, MN
    QUARTERLY JOURNAL OF MATHEMATICS, 1973, 24 (94): : 169 - 175
  • [49] On the Number of Real Zeros of Random Fewnomials
    Buergisser, Peter
    Ergur, Alperen A.
    Tonelli-Cueto, Josue
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2019, 3 (04) : 721 - 732
  • [50] REAL ZEROS OF RANDOM ALGEBRAIC POLYNOMIALS
    FARAHMAND, K
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 113 (04) : 1077 - 1084