Real zeros of random Dirichlet series

被引:7
|
作者
Aymone, Marco [1 ]
机构
[1] Univ Fed Minas Gerais, Belo Horizonte, MG, Brazil
来源
ELECTRONIC COMMUNICATIONS IN PROBABILITY | 2019年 / 24卷
关键词
random series; zeros of random analytic functions; Dirichlet series;
D O I
10.1214/19-ECP260
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let F(sigma) be the random Dirichlet series F(sigma) = Sigma(p is an element of P) X-p/p(sigma), where P is an increasing sequence of positive real numbers and (X (p) ) (p is an element of P) is a sequence of i.i.d. random variables with IP(X-1 = 1) = IP(X-1 = -1) = 1/2. We prove that, for certain conditions on P, if Sigma(p is an element of P) 1/p < infinity then with positive probability F(sigma) has no real zeros while if Sigma(p is an element of P) 1/p = infinity, almost surely F(sigma) has an infinite number of real zeros.
引用
收藏
页数:8
相关论文
共 50 条