Fibonacci (p, r)-cubes which are partial cubes

被引:0
|
作者
Wei, Jianxin [1 ]
Zhang, Heping [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
关键词
Fibonacci; (p; r)-cube; partial cube; median graph; almost-median graph; semi-median graph; GRAPHS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fibonacci (p, r)-cube is an interconnection topology, which unifies a wide range of connection topologies, such as the hypercube, classical Fibonacci cube, postal network, etc. It is known that classical Fibonacci cubes are partial cubes. In this paper we show that a Fibonacci (p, r)-cube is partial cube if and only if either p = 1, or p >= 2 and r <= p + 1. Furthermore, we show that for Fibonacci (p, r)-cubes, almost-median graphs, semi-median graphs and partial cubes are all equivalent.
引用
收藏
页码:197 / 209
页数:13
相关论文
共 50 条
  • [1] Fibonacci (p, r)-cubes which are median graphs
    Ou, Lifeng
    Zhang, Heping
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (03) : 441 - 444
  • [2] Fibonacci (p, r)-cubes as Cartesian products
    Klavzar, Sandi
    Rho, Yoomi
    [J]. DISCRETE MATHEMATICS, 2014, 328 : 23 - 26
  • [3] Determining which Fibonacci (p, r)-cubes can be Z-transformation graphs
    Ou, Lifeng
    Zhang, Heping
    Yao, Haiyuan
    [J]. DISCRETE MATHEMATICS, 2011, 311 (16) : 1681 - 1692
  • [4] FIBONACCI NUMBERS WHICH ARE PERFECT CUBES
    FINKELST.RP
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 275 - &
  • [5] Connectivity of Fibonacci cubes, Lucas cubes, and generalized cubes
    Azarija, Jernej
    Klavzar, Sandi
    Lee, Jaehun
    Rho, Yoomi
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2015, 17 (01): : 79 - 88
  • [6] Fibonacci cubes
    Ollerton, R. L.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2006, 37 (06) : 754 - 756
  • [7] Fibonacci and Lucas p-cubes?
    Wei, Jianxin
    Yang, Yujun
    [J]. DISCRETE APPLIED MATHEMATICS, 2022, 322 : 365 - 383
  • [8] k-Fibonacci Cubes: A Family of Subgraphs of Fibonacci Cubes
    Egecioglu, Omer
    Saygi, Elif
    Saygi, Zulfukar
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2020, 31 (05) : 639 - 661
  • [9] Edges in Fibonacci Cubes, Lucas Cubes and Complements
    Mollard, Michel
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 4425 - 4437
  • [10] Asymptotic Properties of Fibonacci Cubes and Lucas Cubes
    Sandi Klavžar
    Michel Mollard
    [J]. Annals of Combinatorics, 2014, 18 : 447 - 457