k-Fibonacci Cubes: A Family of Subgraphs of Fibonacci Cubes

被引:7
|
作者
Egecioglu, Omer [1 ]
Saygi, Elif [2 ]
Saygi, Zulfukar [3 ]
机构
[1] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[2] Hacettepe Univ, Dept Math & Sci Educ, TR-06800 Ankara, Turkey
[3] TOBB Univ Econ & Technol, Dept Math, TR-06560 Ankara, Turkey
关键词
Hypercube; Fibonacci cube; Fibonacci number; ENUMERATIVE PROPERTIES; DISJOINT HYPERCUBES; LUCAS;
D O I
10.1142/S0129054120500318
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Hypercubes and Fibonacci cubes are classical models for interconnection networks with interesting graph theoretic properties. We consider k-Fibonacci cubes, which we obtain as subgraphs of Fibonacci cubes by eliminating certain edges during the fundamental recursion phase of their construction. These graphs have the same number of vertices as Fibonacci cubes, but their edge sets are determined by a parameter k. We obtain properties of k-Fibonacci cubes including the number of edges, the average degree of a vertex, the degree sequence and the number of hypercubes they contain.
引用
收藏
页码:639 / 661
页数:23
相关论文
共 50 条
  • [1] On the chromatic polynomial and the domination number of k-Fibonacci cubes
    Egeciouglu, Omer
    Saygi, Elif
    Saygi, Zulfukar
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (05) : 1813 - 1823
  • [2] Fibonacci cubes
    Ollerton, R. L.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2006, 37 (06) : 754 - 756
  • [3] Cubes of Finite Vertices Fuzzy Topographic Topological Mapping and k-Fibonacci Sequence
    Yunus, Azrul Azim Mohd
    Ahmad, Tahir
    [J]. PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY (ICAST'18), 2018, 2016
  • [4] Connectivity of Fibonacci cubes, Lucas cubes, and generalized cubes
    Azarija, Jernej
    Klavzar, Sandi
    Lee, Jaehun
    Rho, Yoomi
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2015, 17 (01): : 79 - 88
  • [5] Recursive construction of hierarchical Fibonacci Cubes and hierarchical extended Fibonacci Cubes
    Karci, A
    [J]. PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, 2001, : 615 - 620
  • [6] Decycling of Fibonacci cubes
    Ellis-Monaghan, Joanna A.
    Pike, David A.
    Zout, Yubo
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 35 : 31 - 40
  • [7] Enhanced Fibonacci cubes
    Qian, HF
    Wu, J
    [J]. COMPUTER JOURNAL, 1996, 39 (04): : 331 - 345
  • [8] FIBONACCI AND LUCAS CUBES
    LAGARIAS, JC
    WEISSER, DP
    [J]. FIBONACCI QUARTERLY, 1981, 19 (01): : 39 - 43
  • [9] Extended Fibonacci Cubes
    Wu, J
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1997, 8 (12) : 1203 - 1210
  • [10] Generalized Fibonacci cubes
    Ilic, Aleksandar
    Klavzar, Sandi
    Rho, Yoomi
    [J]. DISCRETE MATHEMATICS, 2012, 312 (01) : 2 - 11