Fibonacci (p, r)-cubes which are partial cubes

被引:0
|
作者
Wei, Jianxin [1 ]
Zhang, Heping [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
关键词
Fibonacci; (p; r)-cube; partial cube; median graph; almost-median graph; semi-median graph; GRAPHS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fibonacci (p, r)-cube is an interconnection topology, which unifies a wide range of connection topologies, such as the hypercube, classical Fibonacci cube, postal network, etc. It is known that classical Fibonacci cubes are partial cubes. In this paper we show that a Fibonacci (p, r)-cube is partial cube if and only if either p = 1, or p >= 2 and r <= p + 1. Furthermore, we show that for Fibonacci (p, r)-cubes, almost-median graphs, semi-median graphs and partial cubes are all equivalent.
引用
收藏
页码:197 / 209
页数:13
相关论文
共 50 条
  • [31] Structure of Fibonacci cubes: a survey
    Sandi Klavžar
    [J]. Journal of Combinatorial Optimization, 2013, 25 : 505 - 522
  • [32] FULL CUBES IN THE FIBONACCI SEQUENCE
    PETHO, A
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 1983, 30 (1-2): : 117 - 127
  • [33] Hierarchical extended Fibonacci cubes
    Karci, A
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, 2005, 29 (B1): : 117 - 125
  • [34] Fast Recognition of Fibonacci Cubes
    Andrej Taranenko
    Aleksander Vesel
    [J]. Algorithmica, 2007, 49 : 81 - 93
  • [35] On the domination number and the 2-packing number of Fibonacci cubes and Lucas cubes
    Castro, Aline
    Klavzar, Sandi
    Mollard, Michel
    Rho, Yoomi
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (09) : 2655 - 2660
  • [36] On isomorphism classes of generalized Fibonacci cubes
    Azarija, Jernej
    Klavzar, Sandi
    Lee, Jaehun
    Pantone, Jay
    Rho, Yoomi
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2016, 51 : 372 - 379
  • [37] The Mostar Index of Fibonacci and Lucas Cubes
    Egecioglu, Omer
    Saygi, Elif
    Saygi, Zulfukar
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 3677 - 3687
  • [38] The degree sequence of Fibonacci and Lucas cubes
    Klavzar, Sandi
    Mollard, Michel
    Petkovsek, Marko
    [J]. DISCRETE MATHEMATICS, 2011, 311 (14) : 1310 - 1322
  • [39] The eccentricity sequences of Fibonacci and Lucas cubes
    Castro, Aline
    Mollard, Michel
    [J]. DISCRETE MATHEMATICS, 2012, 312 (05) : 1025 - 1037
  • [40] Wiener Index of Extended Fibonacci Cubes
    Mary, R. Stalin
    Rajasingh, Indra
    [J]. JOURNAL OF INTERCONNECTION NETWORKS, 2024,