Microbial NAD Metabolism: Lessons from Comparative Genomics

被引:160
|
作者
Gazzaniga, Francesca [2 ,3 ,4 ]
Stebbins, Rebecca [2 ,3 ,4 ]
Chang, Sheila Z. [2 ,3 ,4 ]
McPeek, Mark A. [4 ]
Brenner, Charles [1 ,2 ,3 ]
机构
[1] Univ Iowa, Carver Coll Med, Dept Biochem, Iowa City, IA 52242 USA
[2] Dartmouth Med Sch, Dept Biochem & Genet, Lebanon, NH 03756 USA
[3] Dartmouth Med Sch, Norris Cotton Canc Ctr, Lebanon, NH 03756 USA
[4] Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA
基金
美国国家科学基金会;
关键词
NICOTINAMIDE MONONUCLEOTIDE ADENYLYLTRANSFERASE; L-ASPARTATE OXIDASE; ESCHERICHIA-COLI; DIPHOSPHOPYRIDINE NUCLEOTIDE; HAEMOPHILUS-INFLUENZAE; MYCOBACTERIUM-TUBERCULOSIS; TRANSCRIPTIONAL REGULATION; NMN ADENYLYLTRANSFERASE; CRYSTAL-STRUCTURE; IDENTIFICATION;
D O I
10.1128/MMBR.00042-08
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
NAD is a coenzyme for redox reactions and a substrate of NAD-consuming enzymes, including ADP-ribose transferases, Sir2-related protein lysine deacetylases, and bacterial DNA ligases. Microorganisms that synthesize NAD from as few as one to as many as five of the six identified biosynthetic precursors have been identified. De novo NAD synthesis from aspartate or tryptophan is neither universal nor strictly aerobic. Salvage NAD synthesis from nicotinamide, nicotinic acid, nicotinamide riboside, and nicotinic acid riboside occurs via modules of different genes. Nicotinamide salvage genes nadV and pncA, found in distinct bacteria, appear to have spread throughout the tree of life via horizontal gene transfer. Biochemical, genetic, and genomic analyses have advanced to the point at which the precursors and pathways utilized by a microorganism can be predicted. Challenges remain in dissecting regulation of pathways.
引用
收藏
页码:529 / +
页数:14
相关论文
共 50 条
  • [21] The Bordetellae: Lessons from genomics
    Preston, A
    Parkhill, J
    Maskell, DJ
    [J]. NATURE REVIEWS MICROBIOLOGY, 2004, 2 (05) : 379 - 390
  • [22] The Bordetellae: lessons from genomics
    Andrew Preston
    Julian Parkhill
    Duncan J. Maskell
    [J]. Nature Reviews Microbiology, 2004, 2 : 379 - 390
  • [23] Evolution and pathogenesis of Staphylococcus aureus:: lessons learned from genotyping and comparative genomics
    Feng, Ye
    Chen, Chih-Jung
    Su, Lin-Hui
    Hu, Songnian
    Yu, Jun
    Chiu, Cheng-Hsun
    [J]. FEMS MICROBIOLOGY REVIEWS, 2008, 32 (01) : 23 - 37
  • [24] Milk glycan metabolism by intestinal bifidobacteria: insights from comparative genomics
    Arzamasov, Aleksandr A.
    Osterman, Andrei L.
    [J]. CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2022, 57 (5-6) : 562 - 584
  • [25] Comparative Genomics of NAD(P) Biosynthesis and Novel Antibiotic Drug Targets
    Bi, Jicai
    Wang, Honghai
    Xie, Jianping
    [J]. JOURNAL OF CELLULAR PHYSIOLOGY, 2011, 226 (02) : 331 - 340
  • [26] From Microbial Genomics to Metagenomics
    Kant, Ravi
    Kumar, Abhishek
    Sironen, Tarja
    [J]. INTERNATIONAL JOURNAL OF GENOMICS, 2020, 2020
  • [27] The Metabolism of Leuconostoc Genus Decoded by Comparative Genomics
    Candeliere, Francesco
    Sola, Laura
    Busi, Enrico
    Rossi, Maddalena
    Amaretti, Alberto
    Raimondi, Stefano
    [J]. MICROORGANISMS, 2024, 12 (07)
  • [28] PanACoTA: a modular tool for massive microbial comparative genomics
    Perrin, Amandine
    Rocha, Eduardo P. C.
    [J]. NAR GENOMICS AND BIOINFORMATICS, 2021, 3 (01)
  • [29] The importance of genome sequence quality to microbial comparative genomics
    Theo H. M. Smits
    [J]. BMC Genomics, 20
  • [30] The importance of genome sequence quality to microbial comparative genomics
    Smits, Theo H. M.
    [J]. BMC GENOMICS, 2019, 20 (01)