On the Brezis-Nirenberg problem for a Kirchhoff type equation in high dimension

被引:26
|
作者
Faraci, F. [1 ]
Silva, K. [2 ]
机构
[1] Univ Catania, Dept Math & Comp Sci, I-95125 Catania, Italy
[2] Univ Fed Goias, Inst Matemat & Estat, BR-74001970 Goiania, Go, Brazil
关键词
35J20; 35B33;
D O I
10.1007/s00526-020-01891-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper deals with a parametrized Kirchhoff type problem involving a critical nonlinearity in high dimension. Existence, non existence and multiplicity of solutions are obtained under the effect of a subcritical perturbation by combining variational properties with a careful analysis of the fiber maps of the energy functional associated to the problem. The particular case of a pure power perturbation is also addressed. Through the study of the Nehari manifolds we extend the general case to a wider range of the parameters.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] A BREZIS-NIRENBERG PROBLEM ON HYPERBOLIC SPACES
    Carriao, Paulo Cesar
    Lehrer, Raquel
    Miyagaki, Olimpio Hiroshi
    Vicente, Andre
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,
  • [22] The Brezis-Nirenberg Problem for the Henon Equation: Ground State Solutions
    Secchi, Simone
    ADVANCED NONLINEAR STUDIES, 2012, 12 (02) : 383 - 394
  • [23] EXISTENCE OF SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM
    De Paiva, Francisco O.
    Miyagaki, Olimpio H.
    Presoto, Adilson E.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 61 (02) : 651 - 659
  • [24] MULTIPLE SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM
    Clapp, Monica
    Weth, Tobias
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2005, 10 (04) : 463 - 480
  • [25] The Brezis-Nirenberg type problem involving the square root of the Laplacian
    Tan, Jinggang
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2011, 42 (1-2) : 21 - 41
  • [26] Existence of concentrating solutions of the Hartree type Brezis-Nirenberg problem
    Yang, Minbo
    Ye, Weiwei
    Zhao, Shunneng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 344 : 260 - 324
  • [27] The Brezis-Nirenberg problem for fractional elliptic operators
    Chen, Ko-Shin
    Montenegro, Marcos
    Yan, Xiaodong
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (10) : 1491 - 1511
  • [28] THE NUMBER OF POSITIVE SOLUTIONS TO THE BREZIS-NIRENBERG PROBLEM
    Cao, Daomin
    Luo, Peng
    Peng, Shuangjie
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (03) : 1947 - 1985
  • [29] LEAST ENERGY NODAL SOLUTIONS OF THE BREZIS-NIRENBERG PROBLEM IN DIMENSION N=5
    Roselli, Paolo
    Willem, Michel
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (01) : 59 - 69
  • [30] CRITICAL BREZIS-NIRENBERG PROBLEM FOR NONLOCAL SYSTEMS
    Faria, Luiz F. O.
    Miyagaki, Olimpio H.
    Pereira, Fabio R.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2017, 50 (01) : 333 - 355