Existence of concentrating solutions of the Hartree type Brezis-Nirenberg problem

被引:7
|
作者
Yang, Minbo [1 ]
Ye, Weiwei [1 ,2 ]
Zhao, Shunneng [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Fuyang Normal Univ, Dept Math, Fuyang, Anhui 236037, Peoples R China
基金
中国国家自然科学基金;
关键词
Critical Hartree equation; Hardy-Littlewood-Sobolev inequality; Reduction arguments; Robin function; Concentrating; SEMILINEAR ELLIPTIC EQUATION; CRITICAL SOBOLEV EXPONENT; MULTISPIKE SOLUTIONS; POSITIVE SOLUTIONS; LOCAL UNIQUENESS; SCALAR CURVATURE; PEAK SOLUTIONS; BOUND-STATES; CONSTANTS;
D O I
10.1016/j.jde.2022.10.041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are interested in the existence and asymptotic behavior of the solutions of the following critical Hartree equation with small parameter epsilon> 0, { - Delta u = (integral(Omega) u(2*) (mu)(y) / | x - y|(mu) dy) u(2*) (mu -1) + epsilon u, in Omega, u = 0, on. partial derivative Omega, (0.1) where N >= 5, mu is an element of(0, 4], Omega is a bounded smooth domain in R-N, and 2(*) (mu)= 2N- mu/N-2is the upper critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality. By applying the reduction arguments, we prove that equation (0.1) has a family of solutions ueconcentrating around the critical point of Robin function under some suitable assumptions, if epsilon -> 0, N >= 5, mu is an element of(0, 4] sufficiently close to 0, 4or = 4. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:260 / 324
页数:65
相关论文
共 50 条
  • [1] EXISTENCE OF SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM
    De Paiva, Francisco O.
    Miyagaki, Olimpio H.
    Presoto, Adilson E.
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 61 (02) : 651 - 659
  • [2] ON A BREZIS-NIRENBERG TYPE PROBLEM
    Catrina, Florin
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2006,
  • [3] MULTIPLE SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM
    Clapp, Monica
    Weth, Tobias
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2005, 10 (04) : 463 - 480
  • [4] On the Brezis-Nirenberg Problem
    Schechter, M.
    Zou, Wenming
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 197 (01) : 337 - 356
  • [5] Existence of Solutions for p-Kirchhoff Problem of Brezis-Nirenberg Type with Singular Terms
    Matallah, Atika
    Benchira, Hayat
    El Mokhtar, M. El Mokhtar Ould
    [J]. JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [6] On a Brezis-Nirenberg type quasilinear problem
    Guo, Yuxia
    Liu, Jiaquan
    Wang, Zhi-Qiang
    [J]. JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) : 719 - 753
  • [7] THE NUMBER OF POSITIVE SOLUTIONS TO THE BREZIS-NIRENBERG PROBLEM
    Cao, Daomin
    Luo, Peng
    Peng, Shuangjie
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (03) : 1947 - 1985
  • [8] SINGULAR SOLUTIONS OF THE BREZIS-NIRENBERG PROBLEM IN A BALL
    Flores, Isabel
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (02) : 673 - 682
  • [9] The Brezis-Nirenberg problem on S
    Bandle, C
    Benguria, R
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 178 (01) : 264 - 279
  • [10] On the Brezis-Nirenberg Problem with a Kirchhoff Type Perturbation
    Naimen, Daisuke
    [J]. ADVANCED NONLINEAR STUDIES, 2015, 15 (01) : 135 - 156