Customizable nano-sized colloidal tetrahedra by polymerization-induced particle self-assembly (PIPA)

被引:7
|
作者
Li, Dan [1 ,2 ]
Liu, Nan [3 ]
Zeng, Min [1 ]
Ji, Jinzhao [1 ]
Chen, Xi [1 ,4 ]
Yuan, Jinying [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Key Lab Organ Optoelect & Mol Engn, Beijing 100084, Peoples R China
[2] North Minzu Univ, Sch Mat Sci & Engn, Yinchuan 750021, Ningxia, Peoples R China
[3] Tsinghua Univ, Sch Life Sci, Beijing 100084, Peoples R China
[4] Changan Univ, Sch Mat Sci & Engn, Xian 710064, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
AQUEOUS DISPERSION POLYMERIZATION; DIBLOCK COPOLYMER NANOPARTICLES; RADICAL POLYMERIZATION; SOFT; MOLECULES; EVOLUTION; KINETICS;
D O I
10.1039/d2py00407k
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Colloidal molecules (CMs) are colloidal clusters with molecule-like symmetry and architecture, generated from the self-assembly of nanoparticles with attractive patches. However, the large-scale preparation of patchy nanoparticles remains challenging. Here, we synthesize CH4-like colloidal tetrahedra (CTs) in a scalable way by aqueous polymerization-induced particle self-assembly (PIPA), where isotropic diblock copolymer spheres are used as seeds. During PIPA, the newly formed third block aggregates into attractive patches, which bridge the isotropic spheres together to form CTs in situ, as a result of surface energy minimization. This approach surpasses previous reports in its scalability, high yield and versatility. For example, the purity of as-prepared CTs reaches 78.3% at a concentration of 100 g L-1, which allows the 3D reconstruction of the tetrahedral structure by single particle electron microscopy analysis. The versatility of PIPA is illustrated by preparing CMs of tunable size, valency and various chemical structures. In addition, the architecture of the CMs can be manipulated after the PIPA process simply by the addition of ethanol, for example, the CTs can be transformed into ladder-like structures, paving a new avenue to access hierarchical nanoscale self-assemblies.
引用
收藏
页码:3529 / 3538
页数:10
相关论文
共 50 条
  • [31] Polymerization-Induced Self-Assembly for Artificial Biology: Opportunities and Challenges
    Cheng, Gong
    Perez-Mercader, Juan
    MACROMOLECULAR RAPID COMMUNICATIONS, 2019, 40 (02)
  • [32] Preparation and Performance of Polymerization-Induced Self-Assembly Hydrophilic/Oleophobic Nano Water Dispersion Emulsion
    Zhang M.
    Xiang Y.
    Xue H.
    Zheng Z.
    Deng J.
    Pan Y.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2022, 38 (08): : 9 - 17
  • [33] Redox Polymer-Based Nano-Objects via Polymerization-Induced Self-Assembly
    Boujioui, Fadoi
    Zhuge, Flanco
    Gohy, Jean-Francois
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2020, 221 (01)
  • [34] Synthesis of Multifunctional Polymersomes Prepared by Polymerization-Induced Self-Assembly
    Phan, Hien
    Cavanagh, Robert
    Jacob, Philippa
    Destouches, Damien
    Vacherot, Francis
    Brugnoli, Benedetta
    Howdle, Steve
    Taresco, Vincenzo
    Couturaud, Benoit
    POLYMERS, 2023, 15 (14)
  • [35] Constructing helical nanowires via polymerization-induced self-assembly
    Chen, Qiumeng
    Li, Yahui
    Liu, Ming
    Wu, Xuan
    Shen, Jianliang
    Shen, Liangliang
    RSC ADVANCES, 2021, 11 (15) : 8986 - 8992
  • [36] Polymerization-induced self-assembly of acrylonitrile via ICAR ATRP
    Wang, Guowei
    Wang, Zongyu
    Lee, Bongjoon
    Yuan, Rui
    Lu, Zhao
    Yan, Jiajun
    Pan, Xiangcheng
    Song, Yang
    Bockstaller, Michael R.
    Matyjaszewski, Krzysztof
    POLYMER, 2017, 129 : 57 - 67
  • [37] Polymerization-Induced Self-Assembly for Efficient Fabrication of Biomedical Nanoplatforms
    Zhao, Xiaopeng
    Sun, Changrui
    Xiong, Fei
    Wang, Ting
    Li, Sheng
    Huo, Fengwei
    Yao, Xikuang
    RESEARCH, 2023, 6
  • [38] Polymerization-induced self-assembly for drug delivery: A critical appraisal
    Hochreiner, Eleonora G.
    van Ravensteijn, Bas G. P.
    JOURNAL OF POLYMER SCIENCE, 2023, 61 (24) : 3186 - 3210
  • [39] Reverse Sequence Polymerization-Induced Self-Assembly in Aqueous Media
    Neal, Thomas J.
    Penfold, Nicholas J. W.
    Armes, Steven P.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (33)
  • [40] Self-assembly of nanoparticles employing polymerization-induced phase separation
    Williams, Roberto J. J.
    Hoppe, Cristina E.
    Zucchi, Ileana A.
    Romeo, Hernan E.
    dell'Erba, Ignacio E.
    Gomez, Maria L.
    Puig, Julieta
    Leonardi, Agustina B.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2014, 431 : 223 - 232