Customizable nano-sized colloidal tetrahedra by polymerization-induced particle self-assembly (PIPA)

被引:7
|
作者
Li, Dan [1 ,2 ]
Liu, Nan [3 ]
Zeng, Min [1 ]
Ji, Jinzhao [1 ]
Chen, Xi [1 ,4 ]
Yuan, Jinying [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Key Lab Organ Optoelect & Mol Engn, Beijing 100084, Peoples R China
[2] North Minzu Univ, Sch Mat Sci & Engn, Yinchuan 750021, Ningxia, Peoples R China
[3] Tsinghua Univ, Sch Life Sci, Beijing 100084, Peoples R China
[4] Changan Univ, Sch Mat Sci & Engn, Xian 710064, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
AQUEOUS DISPERSION POLYMERIZATION; DIBLOCK COPOLYMER NANOPARTICLES; RADICAL POLYMERIZATION; SOFT; MOLECULES; EVOLUTION; KINETICS;
D O I
10.1039/d2py00407k
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Colloidal molecules (CMs) are colloidal clusters with molecule-like symmetry and architecture, generated from the self-assembly of nanoparticles with attractive patches. However, the large-scale preparation of patchy nanoparticles remains challenging. Here, we synthesize CH4-like colloidal tetrahedra (CTs) in a scalable way by aqueous polymerization-induced particle self-assembly (PIPA), where isotropic diblock copolymer spheres are used as seeds. During PIPA, the newly formed third block aggregates into attractive patches, which bridge the isotropic spheres together to form CTs in situ, as a result of surface energy minimization. This approach surpasses previous reports in its scalability, high yield and versatility. For example, the purity of as-prepared CTs reaches 78.3% at a concentration of 100 g L-1, which allows the 3D reconstruction of the tetrahedral structure by single particle electron microscopy analysis. The versatility of PIPA is illustrated by preparing CMs of tunable size, valency and various chemical structures. In addition, the architecture of the CMs can be manipulated after the PIPA process simply by the addition of ethanol, for example, the CTs can be transformed into ladder-like structures, paving a new avenue to access hierarchical nanoscale self-assemblies.
引用
收藏
页码:3529 / 3538
页数:10
相关论文
共 50 条
  • [21] Polymerization-induced self-assembly for the construction of nanostructured hydrogels
    Zhao, Zizhuo
    Huo, Meng
    POLYMER CHEMISTRY, 2024, 15 (16) : 1577 - 1590
  • [22] Sequence structure controllable polymerization-induced self-assembly
    Zi-Xuan Chang
    Ren-Man Zhu
    Chun-Yan Hong
    Wen-Jian Zhang
    Science China(Chemistry), 2024, (01) : 390 - 397
  • [23] RAFT-Mediated Polymerization-Induced Self-Assembly
    D'Agosto, Franck
    Rieger, Jutta
    Lansalot, Muriel
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (22) : 8368 - 8392
  • [24] Application of Polymerization-induced Self-assembly (PISA) Technology
    Shi, Bo-yang
    Wang, Guo-wei
    ACTA POLYMERICA SINICA, 2022, 53 (01): : 15 - 29
  • [25] Metal-catalyzed polymerization-induced self-assembly
    Jimaja, Setuhn
    Taton, Daniel
    OReilly, Rachel
    Dove, Andrew
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [26] Polymerization-Induced Self-Assembly of ABC Triblock Copolymer
    Huang, Feng
    Xu, Pengxiang
    Lu, Yisheng
    Lin, Shaoliang
    CHINESE JOURNAL OF ORGANIC CHEMISTRY, 2016, 36 (09) : 2220 - 2224
  • [27] Predicting Monomers for Use in Polymerization-Induced Self-Assembly
    Foster, Jeffrey C.
    Varlas, Spyridon
    Couturaud, Benoit
    Jones, Joseph R.
    Keogh, Robert
    Mathers, Robert T.
    O'Reilly, Rachel K.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (48) : 15733 - 15737
  • [28] Self-assembly processes: Connected spherical nano-sized supramolecules
    Kraemer, Barbara
    Scheer, Manfred
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [29] Polymerization-induced self-assembly via RAFT aqueous dispersion polymerization
    Armes, Steven P.
    Blanazs, Adam
    Madsen, Jeppe
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [30] Principles and Characteristics of Polymerization-Induced Self-Assembly with Various Polymerization Techniques
    Cornel, Erik Jan
    Jiang, Jinhui
    Chen, Shuai
    Du, Jianzhong
    CCS CHEMISTRY, 2021, 3 (04): : 2104 - 2125