共 50 条
The DNA binding protein H-NS binds to and alters the stability of RNA in vitro and in vivo
被引:58
|作者:
Brescia, CC
[1
]
Kaw, MK
[1
]
Sledjeski, DD
[1
]
机构:
[1] Med Coll Ohio, Dept Microbiol & Immunol, Toledo, OH 43614 USA
关键词:
non-coding RNA;
RNA chaperone;
StpA;
RpoS;
D O I:
10.1016/j.jmb.2004.03.067
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
H-NS is an abundant prokaryotic transcription factor that preferentially binds to intrinsically bent DNA. Although H-NS has been shown to reduce the transcription of over 100 genes, evidence suggests that H-NS can also affect the translation of some genes. One such gene, rpoS, specifies a sigma factor, RpoS. The ability of H-NS to bind to the rpoS mRNA and the non-coding RNA regulator, DsrA, was tested. Electrophoretic mobility-shift assays yielded an apparent binding affinity of H-NS binding to curved DNA of approximately 1 muM, whereas binding to rpoS mRNA or DsrA RNA was approximately 3 muM. This RNA binding was not prevented by an excess of competitor yeast RNA, suggesting that H-NS specifically bound these RNAs. Footprint analysis with a single strand-specific ribonuclease was used to identify the H-NS binding site(s) on DsrA and rpoS mRNA. Surprisingly, H-NS appeared to enhance the cleavage of DsrA and rpoS mRNA. The enhanced cleavage was at sites that were predicted to be single-stranded and did not result from contaminating nucleases in the H-NS protein preparation or non-specific effects of the nuclease. Quantitative RT-PCR of RNA isolated from wild-type and hns(-) strains revealed that H-NS also affects the stability of DsrA in vivo. Thus H-NS appears to modulate RNA stability in vivo and in vitro. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:505 / 514
页数:10
相关论文