The Cauchy problem for the Landau-Lifshitz-Gilbert equation in BMO and self-similar solutions

被引:7
|
作者
Gutierrez, Susana [1 ]
de Laire, Andre [2 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] Univ Lille, CNRS, INRIA, UMR 8524,Lab Paul Painleve, F-59000 Lille, France
基金
英国工程与自然科学研究理事会;
关键词
Landau-Lifshitz-Gilbert equation; discontinuous initial data; stability; self-similar solutions; dissipative Schrodinger equation; complex Ginzburg-Landau equation; ferromagnetic spin chain; heat-flow for harmonic maps; LINEAR PARABOLIC EQUATIONS; WELL-POSEDNESS; HEAT-FLOW; EXPANDERS; STABILITY;
D O I
10.1088/1361-6544/ab1296
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a global well-posedness result for the Landau-Lifshitz equation with Gilbert damping provided that the BMO semi-norm of the initial data is small. As a consequence, we deduce the existence of self-similar solutions in any dimension. In the one-dimensional case, we characterize the self-similar solutions associated with an initial data given by some (S-2-valued) step function and establish their stability. We also show the existence of multiple solutions if the damping is strong enough. Our arguments rely on the study of a dissipative quasilinear Schrodinger equation obtained via the stereographic projection and techniques introduced by Koch and Tataru.
引用
收藏
页码:2522 / 2563
页数:42
相关论文
共 50 条
  • [41] Generalized Landau-Lifshitz-Gilbert equation for uniformly magnetized bodies
    Serpico, C.
    Mayergoyz, I. D.
    Bertott, G.
    d'Aquino, M.
    Bonin, R.
    PHYSICA B-CONDENSED MATTER, 2008, 403 (2-3) : 282 - 285
  • [42] Weak Solutions of a Stochastic Landau-Lifshitz-Gilbert Equation Driven by Pure Jump Noise
    Brzezniak, Zdzislaw
    Manna, Utpal
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 371 (03) : 1071 - 1129
  • [43] A finite element approximation for the stochastic Landau-Lifshitz-Gilbert equation
    Goldys, Beniamin
    Le, Kim-Ngan
    Thanh Tran
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) : 937 - 970
  • [44] Self-Similar Solutions of the Cauchy Problem for a Parabolic Stochastic Differential Equation
    Mel'nik, S. A.
    DIFFERENTIAL EQUATIONS, 2019, 55 (08) : 1077 - 1083
  • [45] Self-Similar Solutions of the Cauchy Problem for a Parabolic Stochastic Differential Equation
    S. A. Mel’nik
    Differential Equations, 2019, 55 : 1077 - 1083
  • [47] Regular solutions for multiplicative stochastic Landau-Lifshitz-Gilbert equation and blow-up phenomena
    XueKe Pu
    BoLing Guo
    Science China Mathematics, 2010, 53 : 3115 - 3130
  • [48] The inviscid limit for the Landau-Lifshitz-Gilbert equation in the critical Besov space
    ZiHua Guo
    ChunYan Huang
    Science China Mathematics, 2017, 60 : 2155 - 2172
  • [49] Weak-strong uniqueness for the Landau-Lifshitz-Gilbert equation in micromagnetics
    Di Fratta, Giovanni
    Innerberger, Michael
    Praetorius, Dirk
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 55
  • [50] Study of type-III intermittency in the Landau-Lifshitz-Gilbert equation
    Bragard, J.
    Velez, J. A.
    Riquelme, J. A.
    Perez, L. M.
    Hernandez-Garcia, R.
    Barrientos, R. J.
    Laroze, D.
    PHYSICA SCRIPTA, 2021, 96 (12)