The Cauchy problem for the Landau-Lifshitz-Gilbert equation in BMO and self-similar solutions

被引:7
|
作者
Gutierrez, Susana [1 ]
de Laire, Andre [2 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
[2] Univ Lille, CNRS, INRIA, UMR 8524,Lab Paul Painleve, F-59000 Lille, France
基金
英国工程与自然科学研究理事会;
关键词
Landau-Lifshitz-Gilbert equation; discontinuous initial data; stability; self-similar solutions; dissipative Schrodinger equation; complex Ginzburg-Landau equation; ferromagnetic spin chain; heat-flow for harmonic maps; LINEAR PARABOLIC EQUATIONS; WELL-POSEDNESS; HEAT-FLOW; EXPANDERS; STABILITY;
D O I
10.1088/1361-6544/ab1296
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a global well-posedness result for the Landau-Lifshitz equation with Gilbert damping provided that the BMO semi-norm of the initial data is small. As a consequence, we deduce the existence of self-similar solutions in any dimension. In the one-dimensional case, we characterize the self-similar solutions associated with an initial data given by some (S-2-valued) step function and establish their stability. We also show the existence of multiple solutions if the damping is strong enough. Our arguments rely on the study of a dissipative quasilinear Schrodinger equation obtained via the stereographic projection and techniques introduced by Koch and Tataru.
引用
收藏
页码:2522 / 2563
页数:42
相关论文
共 50 条
  • [1] Self-similar solutions of the one-dimensional Landau-Lifshitz-Gilbert equation
    Gutierrez, Susana
    de Laire, Andre
    NONLINEARITY, 2015, 28 (05) : 1307 - 1350
  • [2] On the Cauchy problem for the noncompact Landau-Lifshitz-Gilbert equation
    Tsutsumi, Masayoshi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (01) : 157 - 174
  • [3] Self-similar shrinkers of the one-dimensional Landau-Lifshitz-Gilbert equation
    Gutierrez, Susana
    de Laire, Andre
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (01) : 473 - 501
  • [4] Periodic solutions for the Landau-Lifshitz-Gilbert equation
    Huber, Alexander
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (05) : 2462 - 2484
  • [5] Global Solvability of the Cauchy Problem for the Landau-Lifshitz-Gilbert Equation in Higher Dimensions
    Melcher, Christof
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (03) : 1175 - 1200
  • [6] Weak Solutions of a Stochastic Landau-Lifshitz-Gilbert Equation
    Brzezniak, Zdzislaw
    Goldys, Beniamin
    Jegaraj, Terence
    APPLIED MATHEMATICS RESEARCH EXPRESS, 2013, (01) : 1 - 33
  • [7] Vanishing Gilbert damping limit problem of Landau-Lifshitz-Gilbert equation
    Song, Wenjing
    Yang, Ganshan
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (08):
  • [8] Fractional Landau-Lifshitz-Gilbert equation
    Verstraten, R. C.
    Ludwig, T.
    Duine, R. A.
    Smith, C. Morais
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [9] Self-similar shrinkers of the one-dimensional Landau–Lifshitz–Gilbert equation
    Susana Gutiérrez
    André de Laire
    Journal of Evolution Equations, 2021, 21 : 473 - 501
  • [10] STOCHASTIC CONTROL OF THE LANDAU-LIFSHITZ-GILBERT EQUATION
    Brzeźniak, Zdzislaw
    Gokhale, Soham
    Manna, Utpal
    arXiv, 2023,