Self-similar shrinkers of the one-dimensional Landau–Lifshitz–Gilbert equation

被引:0
|
作者
Susana Gutiérrez
André de Laire
机构
[1] University of Birmingham,School of Mathematics
[2] Univ. Lille,CNRS, UMR 8524, Inria
来源
关键词
Landau–Lifshitz–Gilbert equation; Self-similar expanders; Backward self-similar solutions; Blow up; Asymptotics; Ferromagnetic spin chain; Heat flow for harmonic maps; Quasi-harmonic sphere; 82D40; 35C06; 35B44; 35C20; 53C44; 35Q55; 58E20; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this paper is the analytical study of self-shrinker solutions of the one-dimensional Landau–Lifshitz–Gilbert equation (LLG), a model describing the dynamics for the spin in ferromagnetic materials. We show that there is a unique smooth family of backward self-similar solutions to the LLG equation, up to symmetries, and we establish their asymptotics. Moreover, we obtain that in the presence of damping, the trajectories of the self-similar profiles converge to great circles on the sphere S2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {S}^2$$\end{document}, at an exponential rate. In particular, the results presented in this paper provide examples of blow-up in finite time, where the singularity develops due to rapid oscillations forming limit circles.
引用
收藏
页码:473 / 501
页数:28
相关论文
共 50 条
  • [1] Self-similar shrinkers of the one-dimensional Landau-Lifshitz-Gilbert equation
    Gutierrez, Susana
    de Laire, Andre
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (01) : 473 - 501
  • [2] Self-similar solutions of the one-dimensional Landau-Lifshitz-Gilbert equation
    Gutierrez, Susana
    de Laire, Andre
    NONLINEARITY, 2015, 28 (05) : 1307 - 1350
  • [3] The Cauchy problem for the Landau-Lifshitz-Gilbert equation in BMO and self-similar solutions
    Gutierrez, Susana
    de Laire, Andre
    NONLINEARITY, 2019, 32 (07) : 2522 - 2563
  • [4] Self-similar one-dimensional quasilattices
    Boyle, Latham
    Steinhardt, Paul J.
    PHYSICAL REVIEW B, 2022, 106 (14)
  • [5] Self-organization in the one-dimensional Landau-Lifshitz-Gilbert-Slonczewski equation with non-uniform anisotropy fields
    Garcia-Nustes, Monica A.
    Humire, Fernando R.
    Leon, Alejandro O.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 96
  • [6] Global existence of Landau-Lifshitz-Gilbert equation and self-similar blowup of Harmonic map heat flow on S2
    Zhong, Penghong
    Yang, Ganshan
    Ma, Xuan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 174 : 1 - 18
  • [7] Traveling Wave Solutions of the One-Dimensional Extended Landau-Lifshitz-Gilbert Equation with Nonlinear Dry and Viscous Dissipations
    Consolo, Giancarlo
    Valenti, Giovanna
    ACTA APPLICANDAE MATHEMATICAE, 2012, 122 (01) : 141 - 152
  • [8] Traveling Wave Solutions of the One-Dimensional Extended Landau-Lifshitz-Gilbert Equation with Nonlinear Dry and Viscous Dissipations
    Giancarlo Consolo
    Giovanna Valenti
    Acta Applicandae Mathematicae, 2012, 122 : 141 - 152
  • [9] ONE-DIMENSIONAL STABILITY OF SELF-SIMILAR CONVERGING FLOWS
    LAZARUS, RB
    PHYSICS OF FLUIDS, 1982, 25 (07) : 1146 - 1155
  • [10] An approach to generalized one-dimensional self-similar elasticity
    Michelitsch, Thomas M.
    Maugin, Gerard A.
    Rahman, Mujibur
    Derogar, Shahram
    Nowakowski, Andrzej F.
    Nicolleau, Franck C. G. A.
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2012, 61 : 103 - 111