Spectral-spatial feature extraction and supervised classification by MF-KELM classifier on hyperspectral imagery

被引:1
|
作者
Shang, Wenting [1 ]
Wu, Zebin [1 ,2 ,3 ]
Xu, Yang [1 ]
Zhang, Yan [3 ]
Wei, Zhihui [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Robot Res Inst Co Ltd, Nanjing 211135, Jiangsu, Peoples R China
[3] Lianyungang E Port Informat Dev Co Ltd, Lianyungang 222042, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Kernel extreme learning machine (KELM); Mean filtering (MF) kernel; Spatial bilateral filtering; Spectral band-subsets; Hyperspectral image (HSI); Supervised classification; EXTREME LEARNING-MACHINE; REGRESSION;
D O I
10.1017/ATSIP.2019.15
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The kernel extreme learning machine (KELM) is more robust and has a faster learning speed when compared with the traditional neural networks, and thus it is increasingly gaining attention in hyperspectral image (HSI) classification. Although the Gaussian radial basis function kernel widely used in KELM has achieved promising classification performance in supervised HSI classification, it does not consider the underlying data structure of HSIs. In this paper, we propose a novel spectral-spatial KELM method (termed as MF-KELM) by incorporating the mean filtering kernel into the KELM model, which can properly compute the mean value of the spatial neighboring pixels in the kernel space. Considering that in the situation of limited training samples the classification result is very noisy, the spatial bilateral filtering information on spectral band-subsets is introduced to improve the accuracy. Experiment results show that our method outperforms other kernel functions based on KELM in terms of classification accuracy and visual comparison.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] A MULTIPLE CLASSIFIER APPROACH FOR SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL DATA
    Tarabalka, Yuliya
    Benediktsson, Jon Atli
    Chanussot, Jocelyn
    Tilton, James C.
    [J]. 2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 1410 - 1413
  • [22] DGSSC: A Deep Generative Spectral-Spatial Classifier for Imbalanced Hyperspectral Imagery
    Xi, Bobo
    Li, Jiaojiao
    Diao, Yan
    Li, Yunsong
    Li, Zan
    Huang, Yan
    Chanussot, Jocelyn
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (04) : 1535 - 1548
  • [23] Spectral-spatial nearest subspace classifier for hyperspectral image classification
    Toker, Kemal Gurkan
    Yuksel, Seniha Esen
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (06) : 2106 - 2133
  • [24] Spectral-Spatial Classification of Hyperspectral Imagery Based on Moment Invariants
    Kumar, Brajesh
    Dikshit, Onkar
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) : 2457 - 2463
  • [25] Semisupervised Spectral-Spatial Classification of Hyperspectral Imagery With Affinity Scoring
    Chen, Zhao
    Wang, Bin
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (08) : 1710 - 1714
  • [26] A spectral-spatial attention aggregation network for hyperspectral imagery classification
    Kuang, Wenlan
    Tu, Bing
    He, Wangquan
    Zhang, Guoyun
    Peng, Yishu
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (19) : 7551 - 7580
  • [27] SELF-SUPERVISED LEARNING HYPERSPECTRAL IMAGE DENOISER WITH SEPARATED SPECTRAL-SPATIAL FEATURE EXTRACTION
    Zhu, Honglin
    Ye, Minchao
    Qiu, Yi
    Qian, Yuntao
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1748 - 1751
  • [28] Spectral-Spatial Classification Based on Affinity Scoring for Hyperspectral Imagery
    Chen, Zhao
    Wang, Bin
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (06) : 2305 - 2320
  • [29] Hyperspectral image spectral-spatial classification using local tensor discriminant feature extraction
    Wu, Di
    Zhang, Ye
    Zhong, Sheng Wei
    Zhou, Guang Jiao
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [30] Spectral-spatial feature learning for hyperspectral imagery classification using deep stacked sparse autoencoder
    Abdi, Ghasem
    Samadzadegan, Farhad
    Reinartz, Peter
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2017, 11