Numerical analysis and simulation for a nonlinear wave equation

被引:11
|
作者
Rincon, M. A. [1 ]
Quintino, N. P. [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, BR-21941 Rio De Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, PPGI, BR-21941 Rio De Janeiro, Brazil
关键词
Numerical analysis; Wave equation; Blow-up; Error estimate; Energy behavior; Numerical simulations; GALERKIN METHODS;
D O I
10.1016/j.cam.2015.09.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study a nonlinear wave equation, depending on different norms of the initial conditions, has bounded solution for all t > 0 or 0 < t < T-0 for some T-0 > 0. We also prove that the solution may blow-up at T-0. Proofs of some the analytical results listed are sketched or given. For approximate numerical solutions we use the finite element method in the spatial variable and the finite difference method in time. The nonlinear system for each time step is solved by Newton's modified method. We present numerical analysis for error estimates and numerical simulations to illustrate the convergence of the theoretical results. We present too, the singularity points (x*, t*), where the blow-up occurs for different rho values in a numerical simulation. (C) 2015 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:247 / 264
页数:18
相关论文
共 50 条
  • [21] Numerical simulation on the longitudinal wave in nonlinear elastic rod
    Hu, Wei-Peng
    Han, Ai-Hong
    Deng, Zi-Chen
    Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, 2010, 27 (01): : 8 - 13
  • [22] SIMULATION OF NONLINEAR WAVE INTERACTION WITH DUAL CYLINDERS IN NUMERICAL WAVE TANK
    Abbasnia, Arash
    Ghiasi, Mahmoud
    TRANSACTIONS OF FAMENA, 2013, 37 (01) : 35 - 48
  • [23] Numerical Simulation of Nonlinear Wave Based on an Improved Source Wave Method
    Ma Z.
    Zhou T.
    Sun J.
    Fang K.
    Zhai G.
    Sun, Jiawen (sunjw84@126.com), 1600, Shanghai Jiao Tong University, 2200 Xietu Rd no.25,, Shanghai, 200032, China (54): : 60 - 68
  • [24] Numerical computation of nonlinear shock wave equation of fractional order
    Kumar, Devendra
    Singh, Jagdev
    Kumar, Sunil
    Sushila
    Singh, B. P.
    AIN SHAMS ENGINEERING JOURNAL, 2015, 6 (02) : 605 - 611
  • [25] Numerical detection and generation of solitary waves for a nonlinear wave equation
    Alonso-Mallo, I.
    Reguera, N.
    WAVE MOTION, 2015, 56 : 137 - 146
  • [26] A new numerical scheme for the nonlinear Schrodinger equation with wave operator
    Li, Xin
    Zhang, Luming
    Zhang, Ting
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 54 (1-2) : 109 - 125
  • [27] Numerical simulations for the energy-supercritical nonlinear wave equation
    Murphy, Jason
    Zhang, Yanzhi
    NONLINEARITY, 2020, 33 (11) : 6195 - 6220
  • [28] NUMERICAL ANALYSIS FOR A LOCALLY DAMPED WAVE EQUATION
    Rincon, M. A.
    Copetti, M. I. M.
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2013, 3 (02): : 169 - 182
  • [29] Superconvergence Analysis for Nonlinear Viscoelastic Wave Equation
    Fan, Mingzhi
    Wang, Fenling
    Shi, Dongwei
    THEORETICAL AND MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE, 2011, 164 : 413 - +
  • [30] Stability Analysis of a Damped Nonlinear Wave Equation
    El-Dib, Yusry O.
    Moatimid, Galal M.
    Elgazery, Nasser S.
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2020, 6 : 1394 - 1403