NUMERICAL ANALYSIS FOR A LOCALLY DAMPED WAVE EQUATION

被引:0
|
作者
Rincon, M. A. [1 ]
Copetti, M. I. M. [2 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Matemat, Dept Ciencia Comp, BR-21941 Rio De Janeiro, Brazil
[2] Univ Fed Santa Maria, Dept Matemat, Santa Maria, RS, Brazil
来源
关键词
Damped wave equation; artificial viscosity; finite element method; error estimate; numerical simulations; HYPERBOLIC EQUATIONS; GALERKIN METHODS; STABILIZATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a semi-discrete finite element formulation with artificial viscosity for the numerical approximation of a problem that models the damped vibrations of a string with fixed ends. The damping coefficient depends on the spatial variable and is effective only in a sub-interval of the domain. For this scheme, the energy of semi-discrete solutions decays exponentially and uniformly with respect to the mesh parameter to zero. We also introduce an implicit in time discretization. Error estimates for the semidiscrete and fully discrete schemes in the energy norm are provided and numerical experiments performed.
引用
收藏
页码:169 / 182
页数:14
相关论文
共 50 条
  • [1] Uniform stabilization of a viscous numerical approximation for a locally damped wave equation
    Muench, Arnaud
    Pazoto, Ademir Fernando
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2007, 13 (02) : 265 - 293
  • [2] Stabilization of a locally damped incompressible wave equation
    Oliveira, HC
    Charao, RC
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 303 (02) : 699 - 725
  • [3] NUMERICAL ANALYSIS OF THE DAMPED WAVE EQUATION BY "ENERGETIC" WEAK FORMULATIONS
    Aimi, A.
    Diligenti, M.
    Guardasoni, C.
    Panizzi, S.
    11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS II - IV, 2014, : 3815 - 3826
  • [4] SEMILINEAR DAMPED WAVE EQUATION IN LOCALLY UNIFORM SPACES
    Michalek, Martin
    Prazak, Dalibor
    Slavik, Jakub
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (05) : 1673 - 1695
  • [5] Numerical analysis for the wave equation with locally nonlinear distributed damping
    Domingos Cavalcanti, V. N.
    Rodrigues, J. H.
    Rosier, C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 301 : 144 - 160
  • [6] Stability Analysis of a Damped Nonlinear Wave Equation
    El-Dib, Yusry O.
    Moatimid, Galal M.
    Elgazery, Nasser S.
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2020, 6 : 1394 - 1403
  • [7] Numerical approximation of the LQR problem in a strongly damped wave equation
    Erwin Hernández
    Dante Kalise
    Enrique Otárola
    Computational Optimization and Applications, 2010, 47 : 161 - 178
  • [8] Numerical approximation of the LQR problem in a strongly damped wave equation
    Hernandez, Erwin
    Kalise, Dante
    Otarola, Enrique
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2010, 47 (01) : 161 - 178
  • [9] Optimizing the decay rate in the damped wave equation: A numerical study
    Fahroo, F
    PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 2108 - 2113
  • [10] COMPARISON BETWEEN NUMERICAL METHODS APPLIED TO THE DAMPED WAVE EQUATION
    Aimi, A.
    Diligenti, M.
    Guardasoni, C.
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2017, 29 (01) : 5 - 40