Power Demand Analysis and Performance Estimation for Active-Combination Energy Storage System Used in Hybrid Electric Vehicles

被引:17
|
作者
Qu Xiaodong [1 ]
Wang Qingnian [1 ]
Yu YuanBin [2 ]
机构
[1] Jilin Univ, State Key Lab Automot Simulat & Control, Changchun 130022, Peoples R China
[2] Jilin Univ, Dept Automobile Engn, Changchun 130025, Peoples R China
基金
中国国家自然科学基金;
关键词
Battery-ultracapacitor (UC) hybrids; hybrid electric vehicles (HEVs); power demand analysis; ULTRACAPACITOR; BATTERY; DESIGN;
D O I
10.1109/TVT.2014.2302017
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Because of the drawbacks of ultracapacitors (UCs) and batteries, an active combination of UCs and Li-ion batteries has been proposed as an energy storage system (ESS) for hybrid electric vehicles (HEVs). Given the complexity of the active control system in an active-combination energy storage system (ACES), the performance match for the ACES used in an HEV is much more complex. In this paper, a widely applicable method to analyze the design process of the ESS used in HEVs is presented. The concept of the power-energy (PE) function is proposed to illustrate the power demand from the HEV and the energy and power capability of the ESS. This concept draws a clear contrast between demand and capability, particularly for the ACES. At the same time, the efficiency of the ACES could be estimated on the basis of this method. Furthermore, by using operating data from a hybrid electric bus in Changchun, China, power demand analysis and performance estimation are carried out for the optimal design of the ACES.
引用
收藏
页码:3128 / 3136
页数:9
相关论文
共 50 条
  • [41] Lyapunov Based Control of Hybrid Energy Storage System in Electric Vehicles
    El Fadil, H.
    Giri, F.
    Guerrero, J.
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 5005 - 5010
  • [42] Multiobjective Optimal Sizing of Hybrid Energy Storage System for Electric Vehicles
    Zhang, Lei
    Hu, Xiaosong
    Wang, Zhenpo
    Sun, Fengchun
    Deng, Junjun
    Dorrell, David. G.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (02) : 1027 - 1035
  • [43] Adaptive control of an ultracapacitor energy storage system for hybrid electric vehicles
    Lu, Yuchen
    Hess, Herbert L.
    Edwards, Dean B.
    IEEE IEMDC 2007: PROCEEDINGS OF THE INTERNATIONAL ELECTRIC MACHINES AND DRIVES CONFERENCE, VOLS 1 AND 2, 2007, : 129 - +
  • [44] Sliding Mode Control of Hybrid Energy Storage System for Electric Vehicles
    Asensio, Maximiliano
    Magallan, Guillermo
    De Angelo, Cristian
    2016 IEEE BIENNIAL CONGRESS OF ARGENTINA (ARGENCON), 2016,
  • [45] Energy Management in Plugin Hybrid Electric Vehicles with Hybrid Energy Storage System Using Hybrid Approach
    Ramasamy, Kannan
    Chandramohan, Kalaivani
    Ghanta, Devadasu
    ENERGY TECHNOLOGY, 2022, 10 (10)
  • [46] A Comparison Study of Hybrid Energy Storage System Topologies for Electric Vehicles
    Al Takrouri, Mohammad
    Ayob, Shahrin Bin Md
    Idris, Nik Rumzi Nik
    Aziz, Mohd Junaidi Abdul
    Ayop, Razman
    Ghith, Ehab Saif
    Tlija, Mehdi
    Majeed, Afraz Hussain
    Arfeen, Zeeshan Ahmad
    IEEE ACCESS, 2024, 12 : 171675 - 171688
  • [47] Generic Model Control for Hybrid Energy Storage System in Electric Vehicles
    Song, Xiaoqi
    Deng, Jing
    Xu, Dezhi
    Yan, Wenxu
    IECON 2017 - 43RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2017, : 7151 - 7156
  • [48] Sizing of Battery/Supercapacitor Hybrid Energy Storage System for Electric Vehicles
    Tien Nguyen-Minh
    Thanh Vo-Duy
    Bao-Huy Nguyen
    Ta, Minh C.
    Trovao, Joao Pedro F.
    2022 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2022,
  • [49] Research on the voltage of Hybrid Energy Storage System in Charging Electric Vehicles
    Li, Kai
    Chen, Xiang-Qun
    Li, Jing-Bo
    Zeng, He-Qing
    Yang, Lei
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATERIAL ENGINEERING AND APPLICATION (ICMEA 2016), 2016, 103 : 27 - 31
  • [50] Control of a battery/supercapacitor hybrid energy storage system for electric vehicles
    Zhang, Lijun
    Xia, Xiaohua
    Barzegar, Farshad
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 9560 - 9565