Dynamically Removing False Features in Pyramidal Lucas-Kanade Registration

被引:13
|
作者
Niu, Yan [1 ]
Xu, Zhiwen [1 ]
Che, Xiangjiu [1 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, State Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
False feature detection; feature tracking; flow confidence measure; image registration; Lucas-Kanade method; optical flow; CONFIDENCE MEASURE; FLOW;
D O I
10.1109/TIP.2014.2331140
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pyramidal Lucas-Kanade (LK) optical flow is a real-time registration technique widely employed by a variety of cutting edge consumer applications. Traditionally, the LK algorithm is applied selectively to image feature points that have strong spatial variation, which include outliers in textured areas. To detect and discard the falsely selected features, previous methods generally assess the goodness of each feature after the flow computation is completed. Such a screening process incurs additional cost. This paper provides a handy (but not obvious) tool for the users of the LK algorithm to remove false features without degrading the algorithm's efficiency. We propose a confidence predictor, which evaluates the ill-posedness of an LK system directly from the underlying data, at a cost lower than solving the system. We then incorporate our confidence predictor into the course-to-fine LK registration to dynamically detect false features and terminate their flow computation at an early stage. This improves the registration accuracy by preventing the error propagation and maintains (or increases) the computation speed by saving the runtime on false features. Experimental results on state-of-the-art benchmarks validate that our method is more accurate and efficient than related works.
引用
收藏
页码:3535 / 3544
页数:10
相关论文
共 50 条
  • [1] Lucas-Kanade Image Registration Using Camera Parameters
    Cho, Sunghyun
    Cho, Hojin
    Tai, Yu-Wing
    Moon, Young Su
    Cho, Junguk
    Lee, Shihwa
    Lee, Seungyong
    [J]. INTELLIGENT ROBOTS AND COMPUTER VISION XXIX: ALGORITHMS AND TECHNIQUES, 2012, 8301
  • [2] Fourier Lucas-Kanade Algorithm
    Lucey, Simon
    Navarathna, Rajitha
    Ashraf, Ahmed Bilal
    Sridharan, Sridha
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (06) : 1383 - 1396
  • [3] Real time face tracking with pyramidal Lucas-Kanade feature tracker
    Kim, Ki-Sang
    Jang, Dae-Sik
    Choi, Hyung-Il
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2007, PT 1, PROCEEDINGS, 2007, 4705 : 1074 - +
  • [4] Adaptive Lucas-Kanade tracking
    Ahmine, Yassine
    Caron, Guillaume
    Mouaddib, El Mustapha
    Chouireb, Fatima
    [J]. IMAGE AND VISION COMPUTING, 2019, 88 : 1 - 8
  • [5] Lucas-Kanade algorithm with GNC
    Junghans, M
    Leich, A
    Jentschel, HJ
    [J]. 2004 7TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS 1-3, 2004, : 1088 - 1091
  • [6] Incorporating symmetry into the Lucas-Kanade framework
    Schreiber, David
    [J]. PATTERN RECOGNITION LETTERS, 2009, 30 (07) : 690 - 698
  • [7] Extended Lucas-Kanade Tracking
    Oron, Shaul
    Bar-Hillel, Aharon
    Avidan, Shai
    [J]. COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 : 142 - 156
  • [8] Real Time Facial Feature Points Tracking with Pyramidal Lucas-Kanade Algorithm
    Abdat, F.
    Maaoui, C.
    Pruski, A.
    [J]. 2008 17TH IEEE INTERNATIONAL SYMPOSIUM ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION, VOLS 1 AND 2, 2008, : 71 - 76
  • [9] Abnormal Crowd Behavior Detection Using Optimized Pyramidal Lucas-Kanade Technique
    Rajasekaran, G.
    Sekar, J. Raja
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 35 (02): : 2399 - 2412
  • [10] Abnormal Crowd Behavior Detection Using Optimized Pyramidal Lucas-Kanade Technique
    Rajasekaran, G.
    Sekar, J. Raja
    [J]. INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 35 (02): : 2399 - 2412