Abnormal Crowd Behavior Detection Using Optimized Pyramidal Lucas-Kanade Technique

被引:1
|
作者
Rajasekaran, G. [1 ]
Sekar, J. Raja [2 ]
机构
[1] Mepco Schlenk Engn Coll, Dept Informat Technol, Sivakasi 626005, India
[2] Mepco Schlenk Engn Coll, Dept Comp Sci & Engn, Sivakasi 626005, India
来源
关键词
Crowd behavior analysis; anomaly detection; Motion Information Image (MII); Enhanced Mutation Elephant Herding Optimization (EMEHO); Optimized Pyramidal Lucas-Kanade Technique (OPLKTs) algorithm; EVENTS DETECTION;
D O I
10.32604/iasc.2023.029119
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Abnormal behavior detection is challenging and one of the growing research areas in computer vision. The main aim of this research work is to focus on panic and escape behavior detections that occur during unexpected/uncertain events. In this work, Pyramidal Lucas Kanade algorithm is optimized using EME-HOs to achieve the objective. First stage, OPLKT-EMEHOs algorithm is used to generate the optical flow from MIIs. Second stage, the MIIs optical flow is applied as input to 3 layer CNN for detect the abnormal crowd behavior. University of Minnesota (UMN) dataset is used to evaluate the proposed system. The experimental result shows that the proposed method provides better classification accuracy by comparing with the existing methods. Proposed method provides 95.78% of precision, 90.67% of recall, 93.09% of f-measure and accuracy with 91.67%.
引用
收藏
页码:2399 / 2412
页数:14
相关论文
共 50 条
  • [1] Abnormal Crowd Behavior Detection Using Optimized Pyramidal Lucas-Kanade Technique
    Rajasekaran, G.
    Sekar, J. Raja
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 35 (02): : 2399 - 2412
  • [2] Dynamically Removing False Features in Pyramidal Lucas-Kanade Registration
    Niu, Yan
    Xu, Zhiwen
    Che, Xiangjiu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (08) : 3535 - 3544
  • [3] Real time face tracking with pyramidal Lucas-Kanade feature tracker
    Kim, Ki-Sang
    Jang, Dae-Sik
    Choi, Hyung-Il
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2007, PT 1, PROCEEDINGS, 2007, 4705 : 1074 - +
  • [4] Large Displacement Detection Using Improved Lucas-Kanade Optical Flow
    Al-Qudah, Saleh
    Yang, Mijia
    SENSORS, 2023, 23 (06)
  • [5] Real Time Facial Feature Points Tracking with Pyramidal Lucas-Kanade Algorithm
    Abdat, F.
    Maaoui, C.
    Pruski, A.
    2008 17TH IEEE INTERNATIONAL SYMPOSIUM ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION, VOLS 1 AND 2, 2008, : 71 - 76
  • [6] Lucas-Kanade Image Registration Using Camera Parameters
    Cho, Sunghyun
    Cho, Hojin
    Tai, Yu-Wing
    Moon, Young Su
    Cho, Junguk
    Lee, Shihwa
    Lee, Seungyong
    INTELLIGENT ROBOTS AND COMPUTER VISION XXIX: ALGORITHMS AND TECHNIQUES, 2012, 8301
  • [7] Using Lucas-Kanade Algorithms to Measure Human Movement
    Mi, Yao
    Bipin, Prakash Kumar
    Shah, Rajeev Kumar
    INFORMATION, COMMUNICATION AND COMPUTING TECHNOLOGY, ICICCT 2018, 2019, 835 : 118 - 130
  • [8] Respiratory behavior detection of cow based on Lucas-Kanade sparse optical flow algorithm
    Song H.
    Wu D.
    Yin X.
    Jiang B.
    He D.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2019, 35 (17): : 215 - 224
  • [9] Stationary Obstacle Detection Using Pyramidal Lucas Kanade Optical Flow
    Hatmaja, Sukra Bambang Wahyu Tri
    Nugroho, Saptadi
    Setyawan, Iwan
    2017 15TH INTERNATIONAL CONFERENCE ON QUALITY IN RESEARCH (QIR) - INTERNATIONAL SYMPOSIUM ON ELECTRICAL AND COMPUTER ENGINEERING, 2017, : 474 - 478
  • [10] Error Analysis and Condition Estimation of the Pyramidal Form of the Lucas-Kanade Method in Optical Flow
    Winkler, Joab R.
    ELECTRONICS, 2024, 13 (05)