Adaptive Lucas-Kanade tracking

被引:14
|
作者
Ahmine, Yassine [1 ,2 ]
Caron, Guillaume [1 ]
Mouaddib, El Mustapha [1 ]
Chouireb, Fatima [2 ]
机构
[1] Univ Picardie Jules Verne, MIS Lab, 33 Rue St Leu, F-80000 Amiens, France
[2] Univ Amar Telidji Laghouat, LTSS Lab, BP 37G Route Ghardaia, Laghouat 03000, Algeria
关键词
Image alignment; Scale-space theory; Lucas & Kanade; Gradient descent method;
D O I
10.1016/j.imavis.2019.04.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dense image alignment, when the displacement between the frames is large, can be a challenging task. This paper presents a novel dense image alignment algorithm, the Adaptive Forwards Additive Lucas-Kanade (AFA-LK) tracking algorithm, which considers the scale-space representation of the images, parametrized by a scale parameter, to estimate the geometric transformation between an input image and the corresponding template. The main result in this framework is the optimization of the scale parameter along with the transformation parameters, which permits to significantly increase the convergence domain of the proposed algorithm while keeping a high estimation precision. The performance of the proposed method was tested in various computer-based experiments, which reveal its interest in comparison with geometric as well as learning-based methods from the literature, both in terms of precision and convergence rate. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] Extended Lucas-Kanade Tracking
    Oron, Shaul
    Bar-Hillel, Aharon
    Avidan, Shai
    [J]. COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 : 142 - 156
  • [2] Fourier Lucas-Kanade Algorithm
    Lucey, Simon
    Navarathna, Rajitha
    Ashraf, Ahmed Bilal
    Sridharan, Sridha
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (06) : 1383 - 1396
  • [3] Lucas-Kanade algorithm with GNC
    Junghans, M
    Leich, A
    Jentschel, HJ
    [J]. 2004 7TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS 1-3, 2004, : 1088 - 1091
  • [4] Learning Deep Lucas-Kanade Siamese Network for Visual Tracking
    Yao, Siyuan
    Han, Xiaoguang
    Zhang, Hua
    Wang, Xiao
    Cao, Xiaochun
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4814 - 4827
  • [5] Face tracking in video with hybrid of Lucas-Kanade and condensation algorithm
    Luo, C
    Chua, TS
    Ng, TK
    [J]. 2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL III, PROCEEDINGS, 2003, : 293 - 296
  • [6] Incorporating symmetry into the Lucas-Kanade framework
    Schreiber, David
    [J]. PATTERN RECOGNITION LETTERS, 2009, 30 (07) : 690 - 698
  • [7] Extending 3D Lucas-Kanade tracking with adaptive templates for head pose estimation
    Chen, Zhih-Wei
    Chiang, Cheng-Chin
    Hsieh, Zi-Tian
    [J]. MACHINE VISION AND APPLICATIONS, 2010, 21 (06) : 889 - 903
  • [8] Generalizing the Lucas-Kanade algorithm for histogram-based tracking
    Schreiber, David
    [J]. PATTERN RECOGNITION LETTERS, 2008, 29 (07) : 852 - 861
  • [9] Real time face tracking with pyramidal Lucas-Kanade feature tracker
    Kim, Ki-Sang
    Jang, Dae-Sik
    Choi, Hyung-Il
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2007, PT 1, PROCEEDINGS, 2007, 4705 : 1074 - +
  • [10] Lucas-kanade without iterative warping
    Rav-Acha, Alex
    Peleg, Shinuel
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, : 1097 - +