Determination of the composition of sialoliths composed of carbonate apatite and albumin using artificial neural networks

被引:4
|
作者
Kuzmanovski, I
Ristova, M
Soptrajanov, B
Stefov, V
Popovski, V
机构
[1] Univ Sv Kiril & Metodij, Inst Hemija, Skopje 1001, Macedonia
[2] Makedonska Akad Naukite & Umetnostite, Skopje 1000, Macedonia
[3] Univ Sv Kiril & Metodij, Klin Maksilofacijalna Hirurgija, Skopje 1001, Macedonia
关键词
salivary calculi; sialoliths; artificial neural networks; analysis; infrared spectroscopy; carbonate apatite; albumin;
D O I
10.1016/j.talanta.2003.10.009
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The determination of the components of the sialoliths is important both from the point of view of chances for a successful medical treatment of the patients and because the prevention of further re-occurrence of sialolithiasis depends upon the knowledge of the nature of the constituents of the concrements. Despite the fact that infrared spectroscopy is widely used for the determination of the composition of sialoliths, urinary calculi and bladder stones, we found no data for any chemometric method developed for such purposes. Here, a method is presented for quantitative determination of the content of salivary calculi composed of albumin and carbonate apatite (one of the most often found constituents in the analyzed calculi from the patients from Macedonia) using artificial neural networks (ANN). The results were checked on real samples using the standard addition method. The precision of the method was estimated using the relative standard deviation, which shows that it is suitable for routine analysis. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:813 / 817
页数:5
相关论文
共 50 条
  • [21] Determination of effectiveness ratios for earthmoving machinery using artificial neural networks
    Hola, Bozena
    Schabowicz, Krzysztof
    9TH INTERNATIONAL CONFERENCE: MODERN BUILDING MATERIALS, STRUCTURES AND TECHNIQUES, VOLS 1-3, 2008, : 931 - 936
  • [22] Simultaneous kinetic determination of sulfite and sulfide using artificial neural networks
    Safavi, A
    Moradlou, O
    Maesum, S
    TALANTA, 2004, 62 (01) : 51 - 56
  • [23] Simultaneous spectrophotometric determination of titanium and niobium using artificial neural networks
    Gao, Z.M.
    Li, J.H.
    Gao, L.R.
    Chen, X.P.
    Lihua Jianyan: Huaxue Fence/Physical Testing and Chemical Analysis Part B:Chemical Analysis, 2001, 37 (01):
  • [24] Induction Motor Parameter Determination Technique using Artificial Neural Networks
    Karanayil, Baburaj
    Rahman, Muhammed Fazlur
    Grantham, Colin
    ICEMS 2008: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS, VOLS 1- 8, 2008, : 793 - 798
  • [25] Citrate and calcium determination in flavored vodkas using artificial neural networks
    McCleskey, SC
    Floriano, PN
    Wiskur, SL
    Anslyn, EV
    McDevitt, JT
    TETRAHEDRON, 2003, 59 (50) : 10089 - 10092
  • [26] Determination of Output Parameters of a Thermoelectric Module using Artificial Neural Networks
    Ciylan, B.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2011, (10) : 63 - 66
  • [27] Determination of Pigment Combinations for Textile Printing Using Artificial Neural Networks
    Golob, Darko
    Osterman, Djurdja Parac
    Zupan, Jure
    FIBRES & TEXTILES IN EASTERN EUROPE, 2008, 16 (03) : 93 - 98
  • [28] Simultaneous electroanalytical determination of luteolin and rutin using artificial neural networks
    Yamil Tesio, Alvaro
    Noel Robledo, Sebastian
    Marcelo Granero, Adrian
    Fernandez, Hector
    Alicia Zon, Maria
    SENSORS AND ACTUATORS B-CHEMICAL, 2014, 203 : 655 - 662
  • [29] Determination of the Boyle temperature of pure gases using artificial neural networks
    Coccia, Gianluca
    Di Nicola, Giovanni
    Tomassetti, Sebastiano
    Pierantozzi, Mariano
    Passerini, Giorgio
    FLUID PHASE EQUILIBRIA, 2019, 493 : 36 - 42
  • [30] DETERMINATION OF REAL ESTATE MARKET PRICES USING ARTIFICIAL NEURAL NETWORKS
    Stubnova, Michaela
    Urbanikova, Marta
    15TH ANNUAL INTERNATIONAL BATA CONFERENCE FOR PH.D. STUDENTS AND YOUNG RESEARCHERS (DOKBAT), 2019, : 1050 - 1058