Periodic orbits of mechanical systems with homogeneous polynomial terms of degree five

被引:3
|
作者
Castro Ortega, Alberto [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
关键词
Averaging method; Polynomial potential; Periodic solutions; CHAOS;
D O I
10.1007/s10509-015-2612-0
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this work the existence of periodic solutions is studied for the Hamiltonian functions H = 1/2 (p(X)(2) + p(Y)(2) + X-2 + Y-2) + a/5 X-5 + bX(3)Y(2), where the first term consist of a harmonic oscillator and the second term are homogeneous polynomials of degree 5 defined by two real parameters a and b. Using the averaging method of second order we provide the sufficient conditions on the parameters to guarantee the existence of periodic solutions for positive energy and we study the stability of these periodic solutions.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [41] Center Problem for Quasi-Homogeneous Polynomial Systems with a Given Weight Degree
    Xiong, Yanqin
    Hu, Jianqiang
    Li, Shimin
    Li, Jingzheng
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (14):
  • [42] Planar Semi-quasi Homogeneous Polynomial Differential Systems with a Given Degree
    Tian, Yuzhou
    Liang, Haihua
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2019, 18 (03) : 841 - 871
  • [43] Asymptotic stabilizability of three-dimensional homogeneous polynomial systems of degree three
    Jerbi, H
    APPLIED MATHEMATICS LETTERS, 2004, 17 (03) : 357 - 366
  • [44] Planar Semi-quasi Homogeneous Polynomial Differential Systems with a Given Degree
    Yuzhou Tian
    Haihua Liang
    Qualitative Theory of Dynamical Systems, 2019, 18 : 841 - 871
  • [45] Locating periodic orbits by topological degree theory
    Polymilis, C
    Servizi, G
    Turchetti, G
    Skokos, C
    Vrahatis, MN
    PROCEEDINGS OF THE CONFERENCE ON LIBRATION POINT ORBITS AND APPLICATIONS, 2003, : 665 - 676
  • [46] Orbital synchronization of homogeneous mechanical systems with one degree of underactuation
    Herrera, Leonardo
    del Carmen Rodriguez-Linan, Maria
    Meza-Sanchez, Marlen
    Clemente, Eddie
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2022, 32 (08) : 4771 - 4787
  • [47] An optimal control approach to the design of periodic orbits for mechanical systems with impacts
    Spedicato, Sara
    Notarstefano, Giuseppe
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2017, 23 : 111 - 121
  • [48] Breakdown mechanisms of normally hyperbolic invariant manifolds in terms of unstable periodic orbits and homoclinic/heteroclinic orbits in Hamiltonian systems
    Teramoto, Hiroshi
    Toda, Mikito
    Komatsuzaki, Tamiki
    NONLINEARITY, 2015, 28 (08) : 2677 - 2698
  • [49] Periodic orbits of radially symmetric Keplerian-like systems: A topological degree approach
    Fonda, Alessandro
    Toader, Rodica
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (12) : 3235 - 3264
  • [50] On the periodic orbits of Hamiltonian systems
    Llibre, Jaume
    Rodrigues, Ana
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (04)