Periodic orbits of mechanical systems with homogeneous polynomial terms of degree five

被引:3
|
作者
Castro Ortega, Alberto [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Matemat, Mexico City 04510, DF, Mexico
关键词
Averaging method; Polynomial potential; Periodic solutions; CHAOS;
D O I
10.1007/s10509-015-2612-0
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this work the existence of periodic solutions is studied for the Hamiltonian functions H = 1/2 (p(X)(2) + p(Y)(2) + X-2 + Y-2) + a/5 X-5 + bX(3)Y(2), where the first term consist of a harmonic oscillator and the second term are homogeneous polynomials of degree 5 defined by two real parameters a and b. Using the averaging method of second order we provide the sufficient conditions on the parameters to guarantee the existence of periodic solutions for positive energy and we study the stability of these periodic solutions.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [31] Exact Periodic Orbits and Chaos in Polynomial Potentials
    N.D. Caranicolas
    Astrophysics and Space Science, 2000, 271 : 341 - 352
  • [32] The flow on negative energy of mechanical systems with homogeneous polynomial potentials
    Falconi M.
    Lacomba E.A.
    Vidal C.
    Qualitative Theory of Dynamical Systems, 2009, 8 (2) : 319 - 328
  • [33] Characterizing the solution set of polynomial systems in terms of homogeneous forms: an LMI approach
    Chesi, G
    Garulli, A
    Tesi, A
    Vicino, A
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2003, 13 (13) : 1239 - 1257
  • [34] Investigation of the Lorentz gas in terms of periodic orbits
    Cvitanovic, Predrag
    Gaspard, Pierre
    Schreiber, Thomas
    CHAOS, 1992, 2 (01) : 85 - 90
  • [35] SHELL STRUCTURE IN TERMS OF PERIODIC-ORBITS
    FRISK, H
    NUCLEAR PHYSICS A, 1990, 511 (02) : 309 - 323
  • [36] DYNAMICAL AVERAGING IN TERMS OF PERIODIC-ORBITS
    CVITANOVIC, P
    PHYSICA D, 1995, 83 (1-3): : 109 - 123
  • [37] DISTRIBUTION OF PERIODIC TORUS ORBITS ON HOMOGENEOUS SPACES
    Einsiedler, Manfred
    Lindenstrauss, Elon
    Michel, Philippe
    Venkatesh, Akshay
    DUKE MATHEMATICAL JOURNAL, 2009, 148 (01) : 119 - 174
  • [38] Polynomial minimal surfaces of degree five
    Kassabov, Ognian
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2017, 60 (02): : 195 - 206
  • [39] POLYNOMIAL FIRST INTEGRALS FOR WEIGHT-HOMOGENEOUS PLANAR POLYNOMIAL DIFFERENTIAL SYSTEMS OF WEIGHT DEGREE 4
    Llibre, Jaume
    Valls, Claudia
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (05) : 1619 - 1642
  • [40] Polynomial first integrals for weight-homogeneous planar polynomial differential systems of weight degree 3
    Cairo, Laurent
    Llibre, Jaume
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 331 (02) : 1284 - 1298