Deep Convolutional Neural Networks Using U-Net for Automatic Brain Tumor Segmentation in Multimodal MRI Volumes

被引:89
|
作者
Kermi, Adel [1 ]
Mahmoudi, Issam [1 ]
Khadir, Mohamed Tarek [2 ]
机构
[1] Natl Higher Sch Comp Sci ESI, LMCS Lab, BP-68M, Algiers 16309, Algeria
[2] Univ Badji Mokhtar Annaba, LabGed Lab, Dept Comp Sci, BP 12, Annaba 23000, Algeria
关键词
Brain tumor segmentation; 3D-MRI; Machine learning; Deep learning; Convolutional Neural Networks; U-net; BraTS'2018 challenge;
D O I
10.1007/978-3-030-11726-9_4
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Precise 3D computerized segmentation of brain tumors remains, until nowadays, a challenging process due to the variety of the possible shapes, locations and image intensities of various tumors types. This paper presents a fully automated and efficient brain tumor segmentation method based on 2D Deep Convolutional Neural Networks (DNNs) which automatically extracts the whole tumor and intra-tumor regions, including enhancing tumor, edema and necrosis, from pre-operative multimodal 3D-MRI. The network architecture was inspired by U-net and has been modified to increase brain tumor segmentation performance. Among applied modifications, Weighted Cross Entropy (WCE) and Generalized Dice Loss (GDL) were employed as a loss function to address the class imbalance problem in the brain tumor data. The proposed segmentation system has been tested and evaluated on both, BraTS'2018 training and validation datasets, which include a total of 351 multimodal MRI volumes of different patients with HGG and LGG tumors representing different shapes, giving promising and objective results close to manual segmentation performances obtained by experienced neuro-radiologists. On the challenge validation dataset, our system achieved a mean enhancing tumor, whole tumor, and tumor core dice score of 0.783, 0.868 and 0.805 respectively. Other quantitative and qualitative evaluations are presented and discussed along the paper.
引用
收藏
页码:37 / 48
页数:12
相关论文
共 50 条
  • [41] TPUAR-Net: Two Parallel U-Net with Asymmetric Residual-Based Deep Convolutional Neural Network for Brain Tumor Segmentation
    Abd-Ellah, Mahmoud Khaled
    Khalaf, Ashraf A. M.
    Awad, Ali Ismail
    Hamed, Hesham F. A.
    IMAGE ANALYSIS AND RECOGNITION (ICIAR 2019), PT II, 2019, 11663 : 106 - 116
  • [42] Automated Brain Tumor Diagnosis Using Deep Residual U-Net Segmentation Model
    Poonguzhali, R.
    Ahmad, Sultan
    Sivasankar, P. Thiruvannamalai
    Babu, S. Anantha
    Joshi, Pranav
    Joshi, Gyanendra Prasad
    Kim, Sung Won
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 2179 - 2194
  • [43] U-Net: Convolutional Networks for Biomedical Image Segmentation
    Ronneberger, Olaf
    Fischer, Philipp
    Brox, Thomas
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 234 - 241
  • [44] MAU-Net: Mixed attention U-Net for MRI brain tumor segmentation
    Zhang, Yuqing
    Han, Yutong
    Zhang, Jianxin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (12) : 20510 - 20527
  • [45] Brain tumor segmentation using U-Net in conjunction with EfficientNet
    Lin, Shu-You
    Lin, Chun-Ling
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [46] Automatic Segmentation Using Deep Convolutional Neural Networks for Tumor CT Images
    Li, Yunbo
    Li, Xiaofeng
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (03)
  • [47] Deep Learning Based Automatic Liver Volume Estimation and Segmentation via U-net Convolutional Neural Network
    Marlatt, B.
    Pettit, R.
    Havelka, J.
    Corr, S. J.
    Rana, A.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2021, 21 : 797 - 797
  • [48] Brain tumor segmentation and classification using optimized U-Net
    Shiny, K., V
    IMAGING SCIENCE JOURNAL, 2024, 72 (02): : 204 - 219
  • [49] BRAIN TUMOR SEGMENTATION AND CLASSIFICATION USING OPTIMIZED U-NET
    Shiny, K. V.
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2024, 24 (01)
  • [50] Tuning U-Net for Brain Tumor Segmentation
    Futrega, Michal
    Marcinkiewicz, Michal
    Ribalta, Pablo
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2022, 2023, 13769 : 162 - 173