TPUAR-Net: Two Parallel U-Net with Asymmetric Residual-Based Deep Convolutional Neural Network for Brain Tumor Segmentation

被引:14
|
作者
Abd-Ellah, Mahmoud Khaled [1 ]
Khalaf, Ashraf A. M. [2 ]
Awad, Ali Ismail [3 ,4 ]
Hamed, Hesham F. A. [2 ]
机构
[1] Al Madina Higher Inst Engn & Technol, Elect & Commun Dept, Giza, Egypt
[2] Minia Univ, Fac Engn, Al Minya, Egypt
[3] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, Lulea, Sweden
[4] Al Azhar Univ, Fac Engn, POB 83513, Qena, Egypt
关键词
Brain tumor segmentation; Computer-aided diagnosis; MRI images; Deep learning; Convolutional neural networks; TPUAR-Net; Parallel U-Net;
D O I
10.1007/978-3-030-27272-2_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The utilization of different types of brain images has been expanding, which makes manually examining each image a labor-intensive task. This study introduces a brain tumor segmentation method that uses two parallel U-Net with an asymmetric residual-based deep convolutional neural network (TPUAR-Net). The proposed method is customized to segment high and low grade glioblastomas identified from magnetic resonance imaging (MRI) data. Varieties of these tumors can appear anywhere in the brain and may have practically any shape, contrast, or size. Thus, this study used deep learning techniques based on adaptive, high-efficiency neural networks in the proposed model structure. In this paper, several high-performance models based on convolutional neural networks (CNNs) have been examined. The proposed TPUAR-Net capitalizes on different levels of global and local features in the upper and lower paths of the proposed model structure. In addition, the proposed method is configured to use the skip connection between layers and residual units to accelerate the training and testing processes. The TPUAR-Net model provides promising segmentation accuracy using MRI images from the BRATS 2017 database, while its parallelized architecture considerably improves the execution speed. The results obtained in terms of Dice, sensitivity, and specificity metrics demonstrate that TPUAR-Net outperforms other methods and achieves the state-of-the-art performance for brain tumor segmentation.
引用
收藏
页码:106 / 116
页数:11
相关论文
共 50 条
  • [1] Microaneurysms segmentation with a U-Net based on recurrent residual convolutional neural network
    Kou, Caixia
    Li, Wei
    Liang, Wei
    Yu, Zekuan
    Hao, Jianchen
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (02)
  • [2] Nanoparticle Segmentation Based on U-Net Convolutional Neural Network
    Zhang Fang
    Wu Yue
    Xiao Zhitao
    Geng Lei
    Wu Jun
    Liu Yanbei
    Wang Wen
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (06)
  • [3] Atrous residual convolutional neural network based on U-Net for retinal vessel segmentation
    Wu, Jin
    Liu, Yong
    Zhu, Yuanpei
    Li, Zun
    PLOS ONE, 2022, 17 (08):
  • [4] Brain Tumor Segmentation Using U-Net Based Deep Neural Networks
    Hai Thanh Le
    Hien Thi-Thu Pham
    7TH INTERNATIONAL CONFERENCE ON THE DEVELOPMENT OF BIOMEDICAL ENGINEERING IN VIETNAM (BME7): TRANSLATIONAL HEALTH SCIENCE AND TECHNOLOGY FOR DEVELOPING COUNTRIES, 2020, 69 : 39 - 42
  • [5] Improving brain tumor segmentation on MRI based on the deep U-net and residual units
    Yang, Tiejun
    Song, Jikun
    Li, Lei
    Tang, Qi
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2020, 28 (01) : 95 - 110
  • [6] A deep Residual U-Net convolutional neural network for automated lung segmentation in computed tomography images
    Khanna, Anita
    Londhe, Narendra D.
    Gupta, S.
    Semwal, Ashish
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2020, 40 (03) : 1314 - 1327
  • [7] AResU-Net: Attention Residual U-Net for Brain Tumor Segmentation
    Zhang, Jianxin
    Lv, Xiaogang
    Zhang, Hengbo
    Liu, Bin
    SYMMETRY-BASEL, 2020, 12 (05):
  • [8] Retinal Vessel Segmentation Algorithm Based on U-NET Convolutional Neural Network
    Zhang, Yun-Hao
    Wang, Jie-Sheng
    Zhang, Zhi-Hao
    ENGINEERING LETTERS, 2023, 31 (04) : 1837 - 1846
  • [9] Nuclei Segmentation with Recurrent Residual Convolutional Neural Networks based U-Net (R2U-Net)
    Alom, Md Zahangir
    Yakopcic, Chris
    Taha, Tarek M.
    Asari, Vijayan K.
    NAECON 2018 - IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE, 2018, : 228 - 233
  • [10] Brain Tumor Segmentation Based on 3D Residual U-Net
    Bhalerao, Megh
    Thakur, Siddhesh
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 218 - 225