TPUAR-Net: Two Parallel U-Net with Asymmetric Residual-Based Deep Convolutional Neural Network for Brain Tumor Segmentation

被引:14
|
作者
Abd-Ellah, Mahmoud Khaled [1 ]
Khalaf, Ashraf A. M. [2 ]
Awad, Ali Ismail [3 ,4 ]
Hamed, Hesham F. A. [2 ]
机构
[1] Al Madina Higher Inst Engn & Technol, Elect & Commun Dept, Giza, Egypt
[2] Minia Univ, Fac Engn, Al Minya, Egypt
[3] Lulea Univ Technol, Dept Comp Sci Elect & Space Engn, Lulea, Sweden
[4] Al Azhar Univ, Fac Engn, POB 83513, Qena, Egypt
关键词
Brain tumor segmentation; Computer-aided diagnosis; MRI images; Deep learning; Convolutional neural networks; TPUAR-Net; Parallel U-Net;
D O I
10.1007/978-3-030-27272-2_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The utilization of different types of brain images has been expanding, which makes manually examining each image a labor-intensive task. This study introduces a brain tumor segmentation method that uses two parallel U-Net with an asymmetric residual-based deep convolutional neural network (TPUAR-Net). The proposed method is customized to segment high and low grade glioblastomas identified from magnetic resonance imaging (MRI) data. Varieties of these tumors can appear anywhere in the brain and may have practically any shape, contrast, or size. Thus, this study used deep learning techniques based on adaptive, high-efficiency neural networks in the proposed model structure. In this paper, several high-performance models based on convolutional neural networks (CNNs) have been examined. The proposed TPUAR-Net capitalizes on different levels of global and local features in the upper and lower paths of the proposed model structure. In addition, the proposed method is configured to use the skip connection between layers and residual units to accelerate the training and testing processes. The TPUAR-Net model provides promising segmentation accuracy using MRI images from the BRATS 2017 database, while its parallelized architecture considerably improves the execution speed. The results obtained in terms of Dice, sensitivity, and specificity metrics demonstrate that TPUAR-Net outperforms other methods and achieves the state-of-the-art performance for brain tumor segmentation.
引用
收藏
页码:106 / 116
页数:11
相关论文
共 50 条
  • [31] Brain Tumor Segmentation with Attention-based U-Net
    Li, Tuofu
    Liu, Javin Jia
    Tai, Yintao
    Tian, Yuxuan
    SECOND IYSF ACADEMIC SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND COMPUTER ENGINEERING, 2021, 12079
  • [32] A deep convolutional neural network based on U-Net to predict annual luminance maps
    Qorbani, Mohammad Ali
    Dalirani, Farhad
    Rahmati, Mohammad
    Hafezi, Mohammad Reza
    JOURNAL OF BUILDING PERFORMANCE SIMULATION, 2022, 15 (01) : 62 - 80
  • [33] AIU-Net: An Efficient Deep Convolutional Neural Network for Brain Tumor Segmentation
    Jiang, Yongchao
    Ye, Mingquan
    Huang, Daobin
    Lu, Xiaojie
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [34] Asymmetric Ensemble of Asymmetric U-Net Models for Brain Tumor Segmentation With Uncertainty Estimation
    Rosas-Gonzalez, Sarahi
    Birgui-Sekou, Taibou
    Hidane, Moncef
    Zemmoura, Ilyess
    Tauber, Clovis
    FRONTIERS IN NEUROLOGY, 2021, 12
  • [35] Segmentation of Breast Masses in Digital Mammography Based on U-Net Deep Convolutional Neural Networks
    Ruchay, A. N.
    Kober, V. I.
    Dorofeev, K. A.
    Karnaukhov, V. N.
    Mozerov, M. G.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2022, 67 (12) : 1531 - 1541
  • [36] Segmentation of Breast Masses in Digital Mammography Based on U-Net Deep Convolutional Neural Networks
    A. N. Ruchay
    V. I. Kober
    K. A. Dorofeev
    V. N. Karnaukhov
    M. G. Mozerov
    Journal of Communications Technology and Electronics, 2022, 67 : 1531 - 1541
  • [37] AttU-NET: Attention U-Net for Brain Tumor Segmentation
    Wang, Sihan
    Li, Lei
    Zhuang, Xiahai
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 302 - 311
  • [38] Automatic Brain Structures Segmentation Using Deep Residual Dilated U-Net
    Li, Hongwei
    Zhygallo, Andrii
    Menze, Bjoern
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I, 2019, 11383 : 385 - 393
  • [39] MIRAU-Net: An improved neural network based on U-Net for gliomas segmentation
    AboElenein, Nagwa M.
    Piao, Songhao
    Noor, Alam
    Ahmed, Pir Noman
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2022, 101
  • [40] Residual 3D U-Net with Localization for Brain Tumor Segmentation
    Demoustier, Marc
    Khemir, Ines
    Nguyen, Quoc Duong
    Martin-Gaffe, Lucien
    Boutry, Nicolas
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 : 389 - 399