Edge Z3 parafermions in fermionic lattices

被引:0
|
作者
Teixeira, Raphael L. R. C. [1 ]
Dias da Silva, Luis G. G., V [1 ]
机构
[1] Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Bosonization - Density matrix renormalization group - Fermionic models - Generalisation - Majorana - Non-Abelian anyons - Quasiparticles - Renormalization group calculations - t-J models - Topological phase;
D O I
10.1103/PhysRevB.105.195121
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Parafermion modes are non-Abelian anyons which were introduced as ZN generalizations of Z(2) Majorana states. In particular, Z(3) parafermions can be used to produce Fibonacci anyons, laying a path towards universal topological quantum computation. Due to their fractional nature, much of the theoretical work on Z(3) parafermions has relied on bosonization methods or parafermionic quasiparticles. In this paper, we introduce a representation of Z(3) parafermions in terms of purely fermionic models. We establish the equivalency of a family of lattice fermionic models written in the basis of the t - J model with a Kitaev-like chain supporting free Z3 parafermionic modes at its ends. By using density matrix renormalization group calculations, we are able to characterize the topological phase transition and study the effect of local operators (doping and magnetic fields) on the spatial localization of the parafermionic modes and their stability. Moreover, we discuss the necessary ingredients towards realizing Z(3) parafermions in strongly interacting electronic systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A characterization of regular tetrahedra in Z3
    Ionascu, Eugen J.
    JOURNAL OF NUMBER THEORY, 2009, 129 (05) : 1066 - 1074
  • [32] Schur rings over Z x Z3
    Chen, Gang
    He, Jiawei
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (10) : 4434 - 4446
  • [33] WHAT IS THE ANSWER TO Z3=1
    ECKMANN, JP
    RECHERCHE, 1983, 14 (141): : 260 - 262
  • [34] The Structure of Simple Sets in Z3
    S. I. Veselov
    A. Yu. Chirkov
    Automation and Remote Control, 2004, 65 : 396 - 400
  • [35] SU(3)L x (Z3 x Z3) GAUGE SYMMETRY AND TRI- BIMAXIMAL MIXING
    Hattori, Chuichiro
    Matsunaga, Mamoru
    Matsuoka, Takeo
    Nakanishi, Kenichi
    MODERN PHYSICS LETTERS A, 2010, 25 (35) : 2981 - 2989
  • [36] ENTANGLEMENT COMPLEXITY OF GRAPHS IN Z3
    SOTEROS, CE
    SUMNERS, DW
    WHITTINGTON, SG
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 111 : 75 - 91
  • [37] ON THOMAE FORMULAS FOR Z3 CURVES
    Hattori, Ryohei
    KYUSHU JOURNAL OF MATHEMATICS, 2012, 66 (02) : 393 - 409
  • [38] 亏群同构于Z3~2×Z3的块代数的结构
    戴康顺
    杨胜
    温州大学学报(自然科学版), 2016, 37 (03) : 15 - 20
  • [39] Knotted polygons with curvature in Z3
    Orlandini, E
    Tesi, MC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (47): : 9441 - 9454
  • [40] The elliptic gamma function and SL(3, Z) x Z3
    Felder, G
    Varchenko, A
    ADVANCES IN MATHEMATICS, 2000, 156 (01) : 44 - 76