Edge Z3 parafermions in fermionic lattices

被引:0
|
作者
Teixeira, Raphael L. R. C. [1 ]
Dias da Silva, Luis G. G., V [1 ]
机构
[1] Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Bosonization - Density matrix renormalization group - Fermionic models - Generalisation - Majorana - Non-Abelian anyons - Quasiparticles - Renormalization group calculations - t-J models - Topological phase;
D O I
10.1103/PhysRevB.105.195121
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Parafermion modes are non-Abelian anyons which were introduced as ZN generalizations of Z(2) Majorana states. In particular, Z(3) parafermions can be used to produce Fibonacci anyons, laying a path towards universal topological quantum computation. Due to their fractional nature, much of the theoretical work on Z(3) parafermions has relied on bosonization methods or parafermionic quasiparticles. In this paper, we introduce a representation of Z(3) parafermions in terms of purely fermionic models. We establish the equivalency of a family of lattice fermionic models written in the basis of the t - J model with a Kitaev-like chain supporting free Z3 parafermionic modes at its ends. By using density matrix renormalization group calculations, we are able to characterize the topological phase transition and study the effect of local operators (doping and magnetic fields) on the spatial localization of the parafermionic modes and their stability. Moreover, we discuss the necessary ingredients towards realizing Z(3) parafermions in strongly interacting electronic systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Arithmetic Solving in Z3
    Bjorner, Nikolaj
    Nachmanson, Lev
    COMPUTER AIDED VERIFICATION, PT I, CAV 2024, 2024, 14681 : 26 - 41
  • [22] Toward the Z3*-theorem
    Toborg, Imke
    Waldecker, Rebecca
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (07) : 2851 - 2889
  • [23] New Z3 strings
    Kneipp, Marco A. C.
    Liebgott, Paulo J.
    PHYSICS LETTERS B, 2016, 763 : 186 - 189
  • [24] Platonic solids in Z3
    Ionascu, Eugen J.
    Markov, Andrei
    JOURNAL OF NUMBER THEORY, 2011, 131 (01) : 138 - 145
  • [26] ON THE STEINHAUS TILING PROBLEM FOR Z3
    Goldstein, Daniel
    Mauldin, R. Daniel
    QUARTERLY JOURNAL OF MATHEMATICS, 2014, 65 (02): : 339 - 347
  • [27] BMW Z3: Nice, but not perfect
    Anon
    Design News (Boston), 2002, 56 (24):
  • [28] The Z(su(2),3/2)k parafermions
    Jacob, P
    Mathieu, P
    PHYSICS LETTERS B, 2005, 627 : 224 - 232
  • [29] PUNCTURED INTERVALS TILE Z3
    Cambie, Stijn
    MATHEMATIKA, 2021, 67 (02) : 489 - 497
  • [30] Z3: An efficient SMT solver
    de Moura, Leonardo
    Bjorner, Nikolaj
    TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, 2008, 4963 : 337 - 340