Edge Z3 parafermions in fermionic lattices

被引:0
|
作者
Teixeira, Raphael L. R. C. [1 ]
Dias da Silva, Luis G. G., V [1 ]
机构
[1] Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Bosonization - Density matrix renormalization group - Fermionic models - Generalisation - Majorana - Non-Abelian anyons - Quasiparticles - Renormalization group calculations - t-J models - Topological phase;
D O I
10.1103/PhysRevB.105.195121
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Parafermion modes are non-Abelian anyons which were introduced as ZN generalizations of Z(2) Majorana states. In particular, Z(3) parafermions can be used to produce Fibonacci anyons, laying a path towards universal topological quantum computation. Due to their fractional nature, much of the theoretical work on Z(3) parafermions has relied on bosonization methods or parafermionic quasiparticles. In this paper, we introduce a representation of Z(3) parafermions in terms of purely fermionic models. We establish the equivalency of a family of lattice fermionic models written in the basis of the t - J model with a Kitaev-like chain supporting free Z3 parafermionic modes at its ends. By using density matrix renormalization group calculations, we are able to characterize the topological phase transition and study the effect of local operators (doping and magnetic fields) on the spatial localization of the parafermionic modes and their stability. Moreover, we discuss the necessary ingredients towards realizing Z(3) parafermions in strongly interacting electronic systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Z4 parafermions in one-dimensional fermionic lattices
    Calzona, Alessio
    Meng, Tobias
    Sassetti, Maura
    Schmidt, Thomas L.
    PHYSICAL REVIEW B, 2018, 98 (20)
  • [2] Many-body localization of Z3 Fock parafermions
    Bahovadinov, M. S.
    Buijsman, W.
    Fedorov, A. K.
    Gritsev, V.
    V. Kurlov, D.
    PHYSICAL REVIEW B, 2022, 106 (22)
  • [3] How SU(2)4 anyons are Z3 parafermions
    Fern, Richard
    Kombe, Johannes
    Simon, Steven H.
    SCIPOST PHYSICS, 2017, 3 (06):
  • [4] Universality of Z3 parafermions via edge-mode interaction and quantum simulation of topological space evolution with Rydberg atoms
    Benhemou, Asmae
    Angkhanawin, Toonyawat
    Adams, Charles S.
    Browne, Dan E.
    Pachos, Jiannis K.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (02):
  • [5] ON THE GENUS OF Z3 X Z3 X Z3
    BRIN, MG
    SQUIER, CC
    EUROPEAN JOURNAL OF COMBINATORICS, 1988, 9 (05) : 431 - 443
  • [6] Z3 x Z3 crossed products
    Matzri, Eliyahu
    JOURNAL OF ALGEBRA, 2014, 418 : 1 - 7
  • [7] Insulating regime of an underdamped current-biased Josephson junction supporting Z3 and Z4 parafermions
    Svetogorov, Aleksandr E.
    Loss, Daniel
    Klinovaja, Jelena
    PHYSICAL REVIEW B, 2021, 103 (18)
  • [8] Z3 and (×Z3)3 symmetry protected topological paramagnets
    Hrant Topchyan
    Vasilii Iugov
    Mkhitar Mirumyan
    Shahane Khachatryan
    Tigran Hakobyan
    Tigran Sedrakyan
    Journal of High Energy Physics, 2023
  • [9] Fermionic characters for graded parafermions
    Bégin, L
    Fortin, JF
    Jacob, P
    Mathieu, P
    NUCLEAR PHYSICS B, 2003, 659 (03) : 365 - 386