Endmember Detection using the Dirichlet Process

被引:0
|
作者
Zare, Alina [1 ]
Gader, Paul D. [1 ]
机构
[1] Univ Florida, Dept Comp & Informat Sci & Engn, Gainesville, FL 32611 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An endmember detection algorithm for hyperspectral imagery using the Dirichlet process to determine the number of endmembers in a hyperspectral image is described. This algorithm provides an estimate of endmember spectra, proportion maps, and the number of endmembers needed for a scene. Updates to the proportion vector for a pixel are sampled using the Dirichlet process. As opposed to previous methods that prune unnecessary endmembers, the proposed algorithm is initialized with one endmember and new endmembers are added through sampling as needed. Results are shown on a two-dimensional dataset and a simulated dataset using endmembers selected from an AVIRIS hyperspectral image.
引用
收藏
页码:3799 / 3802
页数:4
相关论文
共 50 条
  • [1] COMMUNITY DETECTION IN DYNAMIC NETWORK USING DIRICHLET PROCESS
    Wang, Yang
    Li, Kan
    [J]. UNCERTAINTY MODELLING IN KNOWLEDGE ENGINEERING AND DECISION MAKING, 2016, 10 : 187 - 193
  • [2] ENDMEMBER DETECTION USING GRAPH THEORY
    Rohani, Neda
    Parente, Mario
    Saranathan, Arun
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1462 - 1465
  • [3] Signal detection in FDA AERS database using Dirichlet process
    Hu, Na
    Huang, Lan
    Tiwari, Ram C.
    [J]. STATISTICS IN MEDICINE, 2015, 34 (19) : 2725 - 2742
  • [4] HYPERSPECTRAL UNMIXING WITH ENDMEMBER VARIABILITY USING PARTIAL MEMBERSHIP LATENT DIRICHLET ALLOCATION
    Zou, Sheng
    Zare, Alina
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 6200 - 6204
  • [5] Hyperspectral anomaly detection using a background endmember signature
    Chang, Hongwei
    Wang, Tao
    Li, Aihua
    Jiang, Yihe
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (04)
  • [6] Active Online Anomaly Detection using Dirichlet Process Mixture Model and Gaussian Process Classification
    Varadarajan, Jagannadan
    Subramanian, Ramanathan
    Ahuja, Narendra
    Moulin, Pierre
    Odobez, Jean-Marc
    [J]. 2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017), 2017, : 615 - 623
  • [7] Online damage detection of cutting tools using Dirichlet process mixture models?
    Wickramarachchi, Chandula T.
    Rogers, Timothy J.
    McLeay, Thomas E.
    Leahy, Wayne
    Cross, Elizabeth J.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 180
  • [8] An evolutionary event detection model using the Matrix Decomposition Oriented Dirichlet Process
    Erfanian, P. M. A. Yashar
    Cami, Bagher Rahimpour
    Hassanpour, Hamid
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2022, 189
  • [9] Superpixel Endmember Detection
    Thompson, David R.
    Mandrake, Lukas
    Gilmore, Martha S.
    Castano, Rebecca
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (11): : 4023 - 4033
  • [10] Bayesian Outlier Detection with Dirichlet Process Mixtures
    Shotwell, Matthew S.
    Slate, Elizabeth H.
    [J]. BAYESIAN ANALYSIS, 2011, 6 (04): : 665 - 690