Superpixel Endmember Detection

被引:80
|
作者
Thompson, David R. [1 ]
Mandrake, Lukas [1 ]
Gilmore, Martha S. [2 ]
Castano, Rebecca [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[2] Wesleyan Univ, Middletown, CT 06459 USA
来源
关键词
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS); Compact Reconnaissance Imaging Spectrometer (CRISM); endmember detection; hyperspectral images; planetary geology; segmentation; superpixels; EXTRACTION; DIFFUSION; ALGORITHM; ROCKS;
D O I
10.1109/TGRS.2010.2070802
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Superpixels are homogeneous image regions comprised of multiple contiguous pixels. Superpixel representations can reduce noise in hyperspectral images by exploiting the spatial contiguity of scene features. This paper combines superpixels with endmember extraction to produce concise mineralogical summaries that assist in browsing large image catalogs. First, a graph-based agglomerative algorithm oversegments the image. We then use segments' mean spectra as input to existing statistical endmember detection algorithms such as sequential maximum angle convex cone (SMACC) and N-FINDR. Experiments compare automatically detected endmembers to target minerals in an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) scene of Cuprite, Nevada. We also consider a planetary science data set from the Compact Reconnaissance Imaging Spectrometer (CRISM) instrument that benefits from spatial averaging due to higher noise. In both cases, superpixel representations significantly reduce the computational complexity of later processing while improving endmembers' match to the target spectra.
引用
收藏
页码:4023 / 4033
页数:11
相关论文
共 50 条
  • [1] Superpixel linear independent preprocessing for endmember extraction
    Franco, Ricardo
    Torres-Madronero, Maria C.
    Casamitjana, Maria
    Rondon, Tatiana
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (21) : 6698 - 6715
  • [2] ENDMEMBER BUNDLE EXTRACTION BASED ON PURE PIXEL INDEX AND SUPERPIXEL SEGMENTATION
    Hua, Ziqiang
    Li, Xiaorun
    Zhao, Liaoying
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2131 - 2134
  • [3] A Superpixel-by-Superpixel Clustering Framework for Hyperspectral Change Detection
    Li, Qiuxia
    Mu, Tingkui
    Gong, Hang
    Dai, Haishan
    Li, Chunlai
    He, Zhiping
    Wang, Wenjing
    Han, Feng
    Tuniyazi, Abudusalamu
    Li, Haoyang
    Lang, Xuechan
    Li, Zhiyuan
    Wang, Bin
    [J]. REMOTE SENSING, 2022, 14 (12)
  • [4] ENDMEMBER DETECTION USING GRAPH THEORY
    Rohani, Neda
    Parente, Mario
    Saranathan, Arun
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 1462 - 1465
  • [5] Endmember Extraction based on Anomaly Detection
    彭青青
    杨辽
    王杰
    沈金祥
    [J]. 遥感技术与应用, 2011, (04) : 457 - 460
  • [6] Endmember Detection using the Dirichlet Process
    Zare, Alina
    Gader, Paul D.
    [J]. 19TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1-6, 2008, : 3799 - 3802
  • [7] PCE: Piecewise Convex Endmember Detection
    Zare, Alina
    Gader, Paul
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (06): : 2620 - 2632
  • [8] Superpixel Regions Extraction for Target Detection
    Wu, Yingjia
    Wen, Gongjian
    Gao, Feng
    Fan, Yaxiang
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), 2015, : 961 - 965
  • [9] SUPERPIXEL BASED HYPERSPECTRAL TARGET DETECTION
    Caliskan, Akin
    Bati, Emrecan
    Koz, Alper
    Alatan, A. Aydin
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 7010 - 7013
  • [10] SUPERPIXEL-BASED SALIENCY DETECTION
    Liu, Zhi
    Le Meur, Olivier
    Luo, Shuhua
    [J]. 2013 14TH INTERNATIONAL WORKSHOP ON IMAGE ANALYSIS FOR MULTIMEDIA INTERACTIVE SERVICES (WIAMIS), 2013,