Bayesian Outlier Detection with Dirichlet Process Mixtures

被引:20
|
作者
Shotwell, Matthew S. [1 ]
Slate, Elizabeth H. [2 ]
机构
[1] Vanderbilt Univ, Sch Med, Dept Biostat, Nashville, TN 37212 USA
[2] Med Univ S Carolina, Dept Med, Div Biostat & Epidemiol, Charleston, SC 29425 USA
来源
BAYESIAN ANALYSIS | 2011年 / 6卷 / 04期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
partition; optimization; Bayes factor; MODEL; INFERENCE; IDENTIFICATION; DISTRIBUTIONS; COMPONENTS;
D O I
10.1214/11-BA625
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a Bayesian inference mechanism for outlier detection using the augmented Dirichlet process mixture. Outliers are detected by forming a maximum a posteriori (MAP) estimate of the data partition. Observations that comprise small or singleton clusters in the estimated partition are considered outliers. We offer a novel interpretation of the Dirichlet process precision parameter, and demonstrate its utility in outlier detection problems. The precision parameter is used to form an outlier detection criterion based on the Bayes factor for an outlier partition versus a class of partitions with fewer or no outliers. We further introduce a computational method for MAP estimation that is free of posterior sampling, and guaranteed to find a MAP estimate in finite time. The novel methods are compared with several established strategies in a yeast microarray time series.
引用
收藏
页码:665 / 690
页数:26
相关论文
共 50 条
  • [1] Unsupervised outlier detection using random subspace and subsampling ensembles of Dirichlet process mixtures
    Kim, Dongwook
    Park, Juyeon
    Chung, Hee Cheol
    Jeong, Seonghyun
    [J]. PATTERN RECOGNITION, 2024, 156
  • [2] Bayesian ratemaking under Dirichlet process mixtures
    Zhang, J.
    Huang, J.
    Wu, X.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (22) : 11327 - 11340
  • [3] Bayesian Nonnegative Matrix Factorization With Dirichlet Process Mixtures
    Li, Caoyuan
    Xie, Hong-Bo
    Mengersen, Kerrie
    Fan, Xuhui
    Da Xu, Richard Yi
    Sisson, Scott A.
    Van Huffel, Sabine
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 3860 - 3870
  • [4] Bayesian inference for dynamic models with dirichlet process mixtures
    Caron, Francois
    Davy, Manuel
    Doucet, Arnaud
    Duflos, Emmanuel
    Vanheeghe, Philippe
    [J]. 2006 9th International Conference on Information Fusion, Vols 1-4, 2006, : 138 - 145
  • [5] Bayesian Matrix Factorization with Side Information and Dirichlet Process Mixtures
    Porteous, Ian
    Asuncion, Arthur
    Welling, Max
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 563 - 568
  • [6] Bayesian Population Size Estimation Using Dirichlet Process Mixtures
    Manrique-Vallier, Daniel
    [J]. BIOMETRICS, 2016, 72 (04) : 1246 - 1254
  • [7] Bayesian inference for linear dynamic models with Dirichlet process mixtures
    Caron, Francois
    Davy, Manuel
    Doucet, Arnaud
    Duflos, Emmanuel
    Vanheeghe, Philippe
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (01) : 71 - 84
  • [8] Outlier detection in traffic data based on the Dirichlet process mixture model
    Ngan, Henry Y. T.
    Yung, Nelson H. C.
    Yeh, Anthony G. O.
    [J]. IET INTELLIGENT TRANSPORT SYSTEMS, 2015, 9 (07) : 773 - 781
  • [9] Bayesian unsupervised signal classification by dirichlet process mixtures of gaussian processes
    Jackson, Edmund
    Davy, Manuel
    Doucet, Arnaud
    Fitzgerald, William J.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PTS 1-3, PROCEEDINGS, 2007, : 1077 - +
  • [10] Bayesian spectral analysis models for quantile regression with Dirichlet process mixtures
    Jo, Seongil
    Roh, Taeyoung
    Choi, Taeryon
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2016, 28 (01) : 177 - 206